Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 2, pp 463–468 | Cite as

The Effect of High Magnetic Field on Electromagnetic Response and Microwave Absorption of Cobalt Particles During Annealing Process

  • Shulai Wen
  • Chao Yao
  • Dongliang Wang
  • Chiheng Dong
  • Xianping Zhang
  • Yanwei Ma
  • Satoshi Awaji
  • Kazuo Watanabe
Original Paper


The effect of high magnetic field on microwave absorption of cobalt particles, dispersed uniformly in a paraffin matrix, was investigated in microwave range of 2–18 GHz. The high magnetic field during annealing process could significantly improve the dielectric loss of cobalt particles. The maximum reflection loss of the cobalt particles annealed in high magnetic field is −25.00 dB while the coating thickness is 2.5 mm, which is raised by 62.87 % compared with the ones annealed without high magnetic field. The enhancement in microwave absorption may be ascribed to the improved dielectric loss of cobalt particles induced by high magnetic field.


Microwave absorption Permeability Permittivity Cobalt particles 



The authors thank Yunfei Xue for his help and useful discussion. This work was supported by Postdoctoral Science Foundation of China (2015M581169), the Beijing Training Project for the Leading Talents in S & T (Grant No. Z151100000315001) and Youth Innovation Promotion Association of CAS (2014123).


  1. 1.
    Guo, C., Xia, F., Wang, Z., Zhang, L., Xi, L., Zuo, Y.: Flowerlike iron oxide nanostructures and their application in microwave absorption. J. Alloy Compd. 631, 183–191 (2015)CrossRefGoogle Scholar
  2. 2.
    Che, R., Peng, L.M., Duan, X.F., Chen, Q., Liang, X.: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Liu, J., Cao, W.-Q., Jin, H.-B., Yuan, J., Zhang, D.-Q., Cao, M.-S.: Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 3, 4670–4677 (2015)CrossRefGoogle Scholar
  4. 4.
    Liu, Q., Cao, Q., Bi, H., Liang, C., Yuan, K., She, W., Yang, Y., Che, R.: Coni@ SiO2@ TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016)CrossRefGoogle Scholar
  5. 5.
    Yang, H.-J., Cao, W.-Q., Zhang, D.-Q., Su, T.-J., Shi, H.-L., Wang, W.-Z., Yuan, J., Cao, M.-S.: Nio hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Inter. 7, 7073–7077 (2015)CrossRefGoogle Scholar
  6. 6.
    Abbas, S.M., Dixit, A.K., Chatterjee, R., Goel, T.C.: Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. J. Magn. Magn. Mater. 309, 20–24 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Meng, F., Liu, X.: Hyperbranched copper phthalocyanine decorated Fe3O4 microspheres with extraordinary microwave absorption properties. RSC Adv. 5, 7018–7022 (2015)CrossRefGoogle Scholar
  8. 8.
    Ji, R., Cao, C., Chen, Z., Zhai, H., Bai, J.: Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties. J. Mater. Chem. C 2, 5944–5953 (2014)CrossRefGoogle Scholar
  9. 9.
    Ji, R., Cao, C.: Cobalt ferrite sphere-coated buckhorn-like barium titanate: fabrication, characterization, its dielectric resonance, and microwave attenuation properties. J. Appl. Phys. 116, 144106 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, C., Han, X., Zhang, X., Hu, S., Zhang, T., Wang, J., Du, Y., Wang, X., Xu, P.: Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies. J. Phys. Chem. C 114, 14826–14830 (2010)CrossRefGoogle Scholar
  11. 11.
    Tong, G., Yuan, J., Wu, W., Hu, Q., Qian, H., Li, L., Shen, J.: Flower-like Co superstructures: morphology and phase evolution mechanism and novel microwave electromagnetic characteristics. CrystEngComm 14, 2071–2079 (2012)CrossRefGoogle Scholar
  12. 12.
    Liu, T., Zhou, P., Xie, J., Deng, L.: The hierarchical architecture effect on the microwave absorption properties of cobalt composites. J. Appl. Phys. 110, 033918 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Ma, Z., Liu, Q., Yuan, J., Wang, Z., Cao, C., Wang, J.: Analyses on multiple resonance behaviors and microwave reflection loss in magnetic Co microflowers. Phys. Status Solid (B) 249, 575–580 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Ohtsuka, H., Xu, Y., Wada, H.: Alignment of ferrite grains during austenite to ferrite transformation in a high magnetic field. Mater. Trans., JIM 41, 907–910 (2000)CrossRefGoogle Scholar
  15. 15.
    Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M., Yumura, M.: Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater. 14, 1380–1383 (2002)CrossRefGoogle Scholar
  16. 16.
    Kato, H., Miyazaki, T., Sagawa, M., Koyama, K.: Coercivity enhancements by high-magnetic-field annealing in sintered Nd–Fe–B magnets. Appl. Phys. lett. 84, 4230–4232 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Kai, W., Tie, L., Peng-Fei, G., Qiang, W., Yin, L., Ji-Cheng, H: Magnetostriction increase of Tb0.3Dy0.7Fe1.95 alloy prepared by solidification in high magnetic fields. Chin. Phys. Lett. 32, 037502 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Wen, S., Liu, Y., Zhao, X., Cheng, J., Li, H.: Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys. Chem. Chem. Phys. 16, 18333–18340 (2014)CrossRefGoogle Scholar
  19. 19.
    Wu, M., Zhang, Y., Hui, S., Xiao, T., Ge, S., Hines, W., Budnick, J., Taylor, G.: Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80, 4404–4406 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, X.-J., Wang, G.-S., Cao, W.-Q., Wei, Y.-Z., Liang, J.-F., Guo, L., Cao, M.-S.: Enhanced microwave absorption property of reduced graphene oxide (RGO)-mnfe2o4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Inter. 6, 7471–7478 (2014)CrossRefGoogle Scholar
  21. 21.
    Lv, H., Liang, X., Cheng, Y., Zhang, H., Tang, D., Zhang, B., Ji, G., Du, Y.: Coin-like α- Fe2O3@CoFe2O4 Core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Inter. 7, 4744–4750 (2015)CrossRefGoogle Scholar
  22. 22.
    Das, S., Nayak, G.C., Sahu, S.K., Routray, P.C., Roy, A.K., Baskey, H.: Microwave absorption properties of double-layer composites using CoZn/NiZn/MnZn-ferrite and titanium dioxide. J. Magn. Magn. Mater. 377, 111–116 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Wen, F., Zhang, F., Xiang, J., Hu, W., Yuan, S., Liu, Z.: Microwave absorption properties of multiwalled carbon nanotube/FeNi nanopowders as light-weight microwave absorbers. J. Magn. Magn. Mater. 343, 281–285 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Shams Alam, R., Moradi, M., Nikmanesh, H., Ventura, J., Rostami, M.: Magnetic and microwave absorption properties of BaMg x/2Mn x/2Co xTi 2xFe 12−4x O 19 hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20–27 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Wang, Z., Zuo, Y., Yao, Y., Xi, L., Du, J., Wang, J., Xue, D.: Microwave absorption properties of amorphous iron nanostructures fabricated by a high-yield method. J. Phys. D: Appl. Phys. 46, 135002 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Shen, B., Zhai, W., Tao, M., Ling, J., Zheng, W.: Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Inter. 5, 11383–11391 (2013)CrossRefGoogle Scholar
  27. 27.
    Wen, F., Zhang, F., Liu, Z.: Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115, 14025–14030 (2011)CrossRefGoogle Scholar
  28. 28.
    Liu, X., Ou, Z., Geng, D., Han, Z., Xie, Z., Zhang, Z.: Enhanced natural resonance and attenuation properties in superparamagnetic graphite-coated FeNi3 nanocapsules. J. Phys. D Appl. Phys. 42, 155004 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, B., Wang, J., Wang, J., Huo, S., Zhang, B., Tang, Y: Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites. J. Magn. Magn. Mater. (2016). In PressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shulai Wen
    • 1
  • Chao Yao
    • 1
  • Dongliang Wang
    • 1
  • Chiheng Dong
    • 1
  • Xianping Zhang
    • 1
  • Yanwei Ma
    • 1
  • Satoshi Awaji
    • 2
  • Kazuo Watanabe
    • 2
  1. 1.Key Laboratory of Applied Superconductivity, Institute of Electrical EngineeringChinese Academy of ScienceBeijingChina
  2. 2.High Field Laboratory for Superconducting Materials, Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations