Advertisement

Comparison of the Shielding Properties of Superconducting and Superconducting/Ferromagnetic Bi- and Multi-layer Systems

  • L. Gozzelino
  • R. Gerbaldo
  • G. Ghigo
  • F. Laviano
  • M. Truccato
Original Paper

Abstract

This paper compares the shielding properties of superconducting (SC) and superimposed superconducting/ferromagnetic (SC/FM) systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. Both bilayer structures, with the SC cup placed inside the FM one, and multilayer structures, made up of two SC and two FM alternating cups, have been considered. Induction magnetic field values have been calculated by means of a finite element model based on the vector potential formulation, simultaneously taking into account the non-linear properties of both the SC and FM materials. The analysis highlights that at low applied fields, the presence of a height difference between the edges of the SC/FM cups, as well as a suitable choice of the lateral gap between the cups, is a key factor in obtaining hybrid structures with a shielding potential comparable to, or even higher than, that of the single SC cup. In contrast, at high applied fields, all the hybrid arrangements investigated always provide much greater shielding factors than the SC cup alone. The computation results show that at both low and high applied fields, the multilayer solutions are the hybrid shields with the highest efficiency.

Keywords

Magnetic shielding Superimposed superconducting/ferromagnetic systems Finite element model MgB 2 bulk 

Notes

Acknowledgments

We wish to thank F. Gömöry for fruitful discussions. This work was partially supported by the Italian National Institute of Nuclear Physics (INFN) under SR2S-RD experiment.

References

  1. 1.
    Kamiya, K., Warner, B.A., DiPirro, M.J.: Magnetic shielding for sensitive detectors. Cryogenics 41, 401–405 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Denis, S., Dusolier, L., Dirickx, M., Vanderbemden, P. h., Cloots, R., Ausloos, M., Vanderheyden, B: Magnetic shielding properties of high-temperature superconducting tubes subjected to axial fields. Supercond. Sci. Technol. 20, 192–201 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Rabbers, J.J., Oomen, M.P., Bassani, E., Ripamonti, G., Giunchi, G.: Magnetic shielding capability of MgB 2 cylinders. Supercond. Sci. Technol. 23, 125003 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Omura, A., Oka, M., Mori, K., Itoh, M.: Magnetic shielding effects of the superposition of a ferromagnetic cylinder over an HTS cylinder: Magnetic shielding dependence on the air gap between the BPSCCO and soft-iron cylinders. Phys. C 386, 506–511 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Cybart, S.A., Wu, S.M., Anton, S.M., Siddiqi, I., Clarke, J., Dynes, R.C.: Series array of incommensurate superconducting quantum interference devices from YBa 2Cu 3 O 7−δ ion damage Josephson junctions. Appl. Phys. Lett. 93, 182502 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Gozzelino, L., Agostino, A., Gerbaldo, R., Ghigo, G., Laviano, F.: Magnetic shielding efficiency of superconducting/ferromagnetic systems. Supercond. Sci. Technol. 25, 115013 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Lousberg, G.P., Fagnard, J.-F., Ausloos, M., Vanderbemden, P., Vanderheyden, B.: Numerical study of the shielding properties of macroscopic hybrid ferromagnetic/superconductor hollow cylinders. IEEE Trans. Appl. Supercond. 20, 33–41 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Gömöry, F., Solovyov, M., Šouc, J., Navau, C., Prat-Camps, J., Sanchez, A.: Experimental realization of a magnetic cloak. Science 335, 1466–1468 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Gömöry, F., Solovyov, M., Šouc, J.: Magnetization loop modelling for superconducting/ferromagnetic tube of an ac magnetic cloak. Supercond. Sci. Technol. 28, 044001 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Prat-Camps, J., Navau, C., Sanchez, A.: A magnetic wormhole. Sci. Rep. 5, 12488 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Chiampi, M., Gozzelino, L., Manzin, A., Zilberti, L.: Thin-shell formulation applied to superconducting shields for magnetic field mitigation. IEEE Trans. Magn. 47, 4266–4269 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Gozzelino, L., Gerbaldo, R., Ghigo, G., Laviano, F., Agostino, A., Bonometti, E., Chiampi, M., Manzin, A., Zilberti, L.: DC shielding properties of coaxial MgB 2/Fe cups. IEEE Trans. Appl. Supercond. 23, 8201305 (2013)CrossRefGoogle Scholar
  13. 13.
    Gozzelino, L., Gerbaldo, R., Ghigo, G., Laviano, F., Truccato, M., Agostino, A.: Superconducting and hybrid systems for magnetic field shielding. Supercond. Sci. Technol. 29, 034004 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Sirois, F., Grilli, F.: Potential and limits of numerical modelling for supporting the development of HTS devices. Supercond. Sci. Technol. 28, 043002 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Campbell, A.M.: An introduction to numerical methods in superconductors. J. Supercond. Nov. Magn. 24, 27–33 (2011)CrossRefGoogle Scholar
  16. 16.
    Del-Valle, N., Navau, C., Sanchez, A., Chen, D.-X.: Tunability of the critical-current density in superconductor-ferromagnet hybrids. Appl. Phys. Lett. 98, 202506 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Philippe, M.P., Ainslie, M.D., Wéra, L., Fagnard, J.-F., Dennis, A.R., Shi, Y.-H., Cardwell, D.A., Vanderheyden, B., Vanderbemden, P.: Influence of soft ferromagnetic sections on the magnetic flux density profile of a large grain, bulk Y–Ba–Cu–O superconductor. Supercond. Sci. Technol. 28, 095008 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Ainslie, M.D., Rodriguez-Zermeno, V.M., Hong, Z., Yuan, W., Flack, T.J., Coombs, T.A.: An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines. Supercond. Sci. Technol. 24, 045005 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Amemiya, N., Miyamoto, K., Murasawa, S., Mukai, H., Ohmatsu, K.: Finite element analysis of AC loss in non-twisted Bi-2223 tape carrying AC transport current and/or exposed to DC or AC external magnetic field. Phys. C 310, 30–35 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Campbell, A.M.: A direct method for obtaining the critical state in two and three dimensions. Supercond. Sci. Technol. 22, 034005 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Campbell, A.M.: A new method of determining the critical state in superconductors. Supercond. Sci. Technol. 20, 292–295 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Gömöry, F., Vojenčiak, M., Pardo, E., Šouc, J.: Magnetic flux penetration and AC loss in a composite superconducting wire with ferromagnetic parts. Supercond. Sci. Technol. 22, 034017 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    COMSOL 4.3b (http://comsol.com/)
  24. 24.
    Kitahara, K., Akune, T., Matsumoto, Y., Sakamoto, N.: Scaling law and irreversibility fields in MgB 2 superconductors. Phys. C 445–448, 471–473 (2006)CrossRefGoogle Scholar
  25. 25.
    Dew-Hughes, D.: Flux pinning mechanisms in type II superconductors. Phil. Mag 30, 293–305 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    Martínez, E., Mikheenko, P., Martínez-López, M., Millán, A., Bevan, A., Abell, J.S.: Flux pinning force in bulk MgB 2 with variable grain size. Phys. Rev. B 75, 134515 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Gozzelino, L., Laviano, F., Botta, D., Chiodoni, A., Gerbaldo, R., Ghigo, G., Mezzetti, E., Giunchi, G., Ceresara, S., Ripamonti, G.: Critical state analysis in bulk MgB 2 by means of a quantitative magneto-optical technique. Philos. Mag. B 82, 1 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Giunchi, G., Ceresara, S., Ripamonti, G., Chiarelli, S., Spadoni, M.: MgB 2 reactive sintering from the elements. IEEE Trans. Appl. Supercond. 13, 3060–3063 (2003)CrossRefGoogle Scholar
  29. 29.
    Giunchi, G., Ripamonti, G., Cavallin, T., Bassani, E.: The reactive liquid Mg infiltration process to produce large superconducting bulk MgB 2 manufacts. Cryogenics 46, 237–242 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di TorinoTorinoItaly
  3. 3.Department of Physics and Nanostructured Interfaces and Surfaces CentreUniversità di TorinoTorinoItaly

Personalised recommendations