Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 4, pp 1067–1072 | Cite as

Kink Structure in Nodal Quasiparticle Dispersion in a Boson-Fermion Model of Superconductivity

Original Paper


At temperatures below a certain T , single unbound electrons in high- T c cuprates are assumed to coexist with bosonic Cooper pairs (CPs) of electrons emerging incoherently from an attractively interacting system of fermions. Due to both simultaneous interfermion attractions (as in BCS theory) and depairings, the conductive electrons at temperatures higher than the T c of a Bose-Einstein condensation of preformed CPs fluctuate unceasingly between single-fermionic states and states of two bound electrons considered actual bosonic objects. We explore how these interactions in a background of such “frustrated electrons,” i.e., those electrons appearing both as unbound (free) electrons and as constituents of the bosonic CPs, affect the dispersion of a fermion moving in the assembly of other electrons and, in particular, how the recently observed “kinks” in the dispersion curves emerge.


Boson-Fermion mixture Pseudogap Kinks Nodal quasiparticle dispersion 



TAM thanks N.M. Plakida for the valuable remarks. MdeLl thanks PAPIIT (Mexico) for the support through project IN100314.


  1. 1.
    Uemura, Y. J., et al.: Phys. Rev. Lett. 62, 2317 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Abrahams, E.: Int. J. Mod. Phys. B 24, 4150 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Friedberg, R., Lee, T. D., Ren, H. -C.: Phys. Rev. B 45, 10732 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Chen, Q., Stajic, J., Tan, S., Levin, K.: Phys. Repts. 412, 1 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Hai, G. -Q., Peeters, F. M.: Eur. Phys. J. B 88, 20 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Mamedov, T. A., de Llano, M.: Phil. Mag. 94, 4102 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Mamedov, T.A., de Llano, M.: J. Phys. Soc. Jpn 80, 074718 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Tolmachev, V. V.: Phys. Lett. A 266, 400 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Ranninger, J., Micnas, R., Robaszkiewicz, S.: Ann. Phys. (Paris) 13, 455 (1988)ADSGoogle Scholar
  10. 10.
    Bardeen, J., Cooper, L. N., Schrieffer, J. R.: Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Mamedov, T. A., de Llano, M.: Phil. Mag. 93, 2896 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Yang, H. -B., Rameau, J. D., Johnson, P. D., Valla, T., Tsvelik, A., Gu, G. D.: Nature 456, 77 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Zubarev, D. N.: Sov. Phys. Uspekhi 3, 320 (1960)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Mamedov, T.A., de Llano, M.: Phys. Rev. B 75, 104506 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Bogoliubov, N.N.: In: Bogoliubov, N.N. (ed.) Statistical Physics and Quantum Field Theory, Nauka, Moscow. [in Russian] (1972)Google Scholar
  16. 16.
    Mamedov, T. A., de Llano, M.: J. Phys. Soc. Jpn 79, 044706 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Campuzano, J.C., Norman, M.R., Randeria, M.: arXiv:cond-matt/0209476v1
  18. 18.
    Ziman, J.M.: Principles of the Theory of Solids. Cambridge University Press (1972)Google Scholar
  19. 19.
    Prudnikov, A. P., Brichkov, Y.A., Marichev, O.I.: Integrals and Series. Nauka, Moscow (1981). [in Russian]Google Scholar
  20. 20.
    Newns, D. M., Krishnamurthy, H. R., Pattnaik, P. C., Tsuei, C. C., Chi, C.C., Kane, C. L.: Physica B 186–188, 801 (1993)CrossRefGoogle Scholar
  21. 21.
    Maksimov, E. G.: Phys. Usp. 51, 167 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Lanzara, A., et al.: Nature 412, 510 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of EngineeringBaskent UniversityAnkaraTurkey
  2. 2.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations