Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 11, pp 2873–2879 | Cite as

Thermal Stability Study of Tilted-Polarizer Spin Torque Nano-oscillator

  • H. Q. Cui
  • L. Cai
  • L. Ni
  • P. Wei
  • C. W. Feng
  • X. K. Yang
Original Paper


The spin torque nano-oscillator (STNO) with out of film plane fixed layer magnetization, namely the tilted-polarizer spin torque nano-oscillator (TP-STNO), has the advantage of microwave generation without the help of a magnetic field, which makes it promising to be integrated into a chip. In this paper, we present a thermal stability study of TP-STNO by macrospin modeling, in which the thermal noise is induced into the H eff of the Landau-Liftshitz-Gilbert-Slonczewski equation in the form of a stochastic magnetic field. The TP-STNO with different tilted angles is studied by numerical simulations based on the macrospin model and nonlinear system theory. Depending on the analysis of Lyapunov exponents as a function of drive current density in the room temperature range, we obtain the drive current density ranges in which TP-STNO can oscillate stably in the presence of thermal noise. These quantified results are essential during the practical usage of TP-STNO.


Spin torque nano-oscillator Tilted polarizer Thermal noise Switching dynamics Oscillation stability 



This work is supported by the National Natural Science Foundation of China (Grant No. 61302022, Grant No. 61401498) and the Program of Shaanxi Provincial Natural Science for Basic Research (Grant No. 2014JQ8343).


  1. 1.
    Khanna, P. S.: Microwave oscillators: the state of the technology. Microwave J. 49, 22–34 (2006)Google Scholar
  2. 2.
    Kiselev, S. I., Sankey, J. C., Krivorotov, I. N., Emley, N. C., Schoelkopf, R. J., Buhrman, R. A., Ralph, D. C.: Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Rippard, W., Pufall, M., Kaka, S., Russek, S., Silva, T.: Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Silva, T., Rippard, W. H.: Developments in nano-oscillators based upon spin-transfer point-contact devices. J Magn. Magn. Mater. 320, 1260–1271 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Slavin, A., Tiberkevich, V.: Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Zeng, Z. M., Amiri, P. K., Krivorotov, I. N., Zhao, H., Finocchio, G., Wang, J. P., Katine, J. A., Huai, Y. M., Langer, J., Galatsis, K., Wang, K. L., Jiang, H. W.: High-power coherent microwave emission from magnetic tunnel junction nano-oscillators with perpendicular anisotropy. ACS Nano 6, 6115–6121 (2012)CrossRefGoogle Scholar
  7. 7.
    Zeng, Z. M., Finocchio, G., Jiang, H. W.: Spin transfer nano-oscillators. Nanoscale 5, 2219–2231 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Rodríguez-Suárez, R. L., Rezende, S. M., Azevedo, A., Aguiar, F. M.: Spin-wave theory for the magnetic damping in microwave nano-oscillators. J. Supercond. Nov. Magn. 23, 33–35 (2010)CrossRefGoogle Scholar
  9. 9.
    Firastrau, I., Buda-Prejbeanu, L. D., Dieny, B., Ebels, U.: Spin-torque nano-oscillator based on a synthetic antiferromagnet free layer and perpendicular to plane polarizer. J. Appl. Phys. 113, 113908 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001) Fe / (001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    Darques, M., Dussaux, A., Khvalkovskiy, A. V., De la Torre Medina, J., Abreu Araujo, F., Guillemet, R., Bouzehouane, K., Fusil, S., Grollier, J., Avanesyan, G. G., Zvezdin, K. A., Cros, V., Piraux, L.: Bottom-up approach for the fabrication of spin torque nano-oscillators. J. Phys. D: Appl. Phys. 44, 105003 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Lee, K. J., Redon, O., Dieny, B.: Analytical investigation of spin-transfer dynamics using a perpendicular-to-plane polarizer. Appl. Phys. Lett. 86, 022505 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Houssameddine, D., Ebels, U., Delaët, B., Rodmacq, B., Firastrau, I., Ponthenier, F., Brunet, M., Thirion, C., Michel, J. P., Prejbeanu-Buda, L., Cyrille, M. C., Redon, O., Dieny, B.: Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat. Mater. 6, 447 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Zhou, Y., Zha, C. L., Bonetti, S., Persson, J., Åkerman, J.: Spin-torque oscillator with tilted fixed layer magnetization. Appl. Phys. Lett. 92, 262508 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Zhou, Y., Zha, C. L., Bonetti, S., Persson, J., Åkerman, J.: Microwave generation of tilted-polarizer spin torque oscillator. J. Appl. Phys. 105, 07D116 (2009)Google Scholar
  16. 16.
    Zhou, Y., Bonetti, S., Zha, C. L., Åkerman, J.: Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer. New J. Phys. 11, 103028 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    He, P. B., Wang, R. X., Li, Z. D., Liu, Q. H., Pan, A. L., Wang, Y. G., Zou, B. S.: Current-driven magnetization dynamics in magnetic trilayers with a tilted spin polarizer. Euro. Phys. J. B 73, 417–421 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Wang, R. X., He, P. B., Li, Z. D., Pan, A. L., Liu, Q. H.: Phase diagram of magnetic multilayers with tilted dual spin torques. J. Appl. Phys. 109, 033905 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Lee, C.-M., Yang, J.-S., Wu, T.-H.: Micromagnetic simulation for spin-transfer switching with a tilted spin polarizer. IEEE Trans. Magn. 47, 649–652 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Zhou, Y., Zhang, H., Liu, Y., Åkerman, J.: Macrospin and micromagnetic studies of tilted polarizer spin-torque nano-oscillators. J. Appl. Phys. 112, 063903 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Brown, W.: Thermal fluctuation of fine ferromagnetic particles. IEEE Trans. Magn. 15, 1196–1208 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    Pinna, D., Stein, D. L., Kent, A. D.: Spin-torque oscillators with thermal noise: a constant energy orbit approach. Phys. Rev. B 90, 174405 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Xiao, J., Zangwill, A., Stiles, M. D.: Macrospin models of spin transfer dynamics. Phys. Rev. B 72, 014446 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Brown, W. F.: Thermal fluctuations of a single-domain particle. Phy. Rev. 130, 1677–1686 (1963)ADSCrossRefGoogle Scholar
  25. 25.
    Anh Nguyen, T. N., Fang, Y., Fallahi, V., Benatmane, N., Mohseni, S. M., Dumas, R. K., Åkerman, J.: [Co/Pd]-NiFe exchange springs with tunable magnetization tilt angle. Appl. Phys. Lett. 98, 172502 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. A.: Determining lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • H. Q. Cui
    • 1
  • L. Cai
    • 1
  • L. Ni
    • 2
  • P. Wei
    • 3
  • C. W. Feng
    • 1
  • X. K. Yang
    • 1
  1. 1.Science CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China
  2. 2.Xi’an Communications InstituteXi’anPeople’s Republic of China
  3. 3.Luoyang Electronic Equipment Test CenterLuoyangPeople’s Republic of China

Personalised recommendations