Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 10, pp 2495–2501 | Cite as

Flux-Pinning-Induced Stress and Deformation Analyses of a Long Rectangular Superconducting Bicrystal

  • Feng Xue
  • Wenqing Zhang
  • Jun Zeng
  • Xiaofan Gou
Original Paper


The flux-pinning-induced stress and deformation of a long rectangular superconducting bicrystal with an arbitrary aspect ratio are analyzed based on the critical-state model and the finite element numerical method. The flux and current distributions in the superconductor with a low-angle grain boundary (GB) are obtained based on a constant GB critical current density assumption. The distributions of the stresses within the superconductor are obtained for different magnetization stages. The deformation and especially the shape distortion in the irreversible magnetostriction of the superconductor are analyzed. In addition, the relation between the maximum stress on the grain boundary and the ratio of the GB critical current density to the grain critical current density is discussed when the applied magnetic field is reduced to zero.


Bicrystal Grain boundary Shape distortion Finite element numerical 



This research was supported by a grant of the Fund of Natural Science Foundation of China (Nos. 11402073 and 11372096), the China Postdoctoral Science Foundation (No. 2013M531260), the Fund of Natural Science Foundation of Jiangsu Province (No. BK20130824), the Program for Research Fund for the Doctoral Program of Higher Education of China, and the Fundamental Research Funds for the Central Universities (No. 2013B05014).


  1. 1.
    Sanchez, A., Navau, C., Del-Valle, N., Chen, D.X., Clem, J.R.: Appl. Phys. Lett. 96, 072510 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Murakami, M.: Int. J. Appl. Ceram. Technol. 4, 225 (2007)CrossRefGoogle Scholar
  3. 3.
    Li, B., Zhou, D., Xu, K., Hara, S., Tsuzuki, K., Miki, M., Felder, B., Deng, Z., Izumi, M.: Phys. C 482, 50 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Zhou, D., Izumi, M., Miki, M., Felder, B., Ida, T., Kitano, M.: Supercond. Sci. Technol. 25, 103001 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Tomita, M., Murakami, M.: Nature 421, 517 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Aydiner, A., Yanmaz, E.: Supercond. Sci. Technol. 18, 1010 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Durrell, J.H., Dennis, A.R., Jaroszynski, J., Ainslie, M.D., Palmer, K.G.B., Shi, Y.H., Campbell, A.M., Hull, J., Strasik, M., Hellstrom, E.E., Cardwell, D.A.: Supercond. Sci. Technol. 27, 082001 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Diko, P.: Supercond. Sci. Technol. 17, R45 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Gao, Z.W., Zhou, Y.H.: Phys. Lett. A 372, 5261 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kenfaui, D., Sibeud, P.F., Louradour, E., Chaud, X., Noudem, J.G.: Adv. Funct. Mater. 24, 3996 (2014)CrossRefGoogle Scholar
  11. 11.
    Ikuta, H., Hirota, N., Nakayama, Y., Kishio, K., Kitazawa, K.: Phys. Rev. Lett. 70, 2166 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Hirota, N., Ikuta, H., Heill, L.K., Yasunaka, T., Kishio, K., Kitazawa, K.: J. Supercond. 7, 283 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Nabialek, A., Komorowshi, P., Gutowska, M.U., Balbashov, M.A., Gorecka, J.N., Szymczak, H., Mironov, O.A.: Supercond. Sci. Technol. 10, 786 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Fülber, K., Geerkens, A., Ewert, S., Winzer, K.: Phys. C 299, 1–8 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Ikuta, H., Kishio, K., Kitazawa, K.: J. Appl. Phys. 76, 4776 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Koziol, Z., Dunlap, R.A.: J. Appl. Phys. 79, 4662 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Johansen, T.H., Bratsberg, H., Lothe, J.: Supercond. Sci. Technol. 11, 1186 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Johansen, T.H., Shantsev, D.V.: Supercond. Sci. Technol. 16, 1109 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Yong, H.D., Zhou, Y.H.: J. Appl. Phys. 104, 043907 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Yong, H.D., Jing, Z., Zhou, Y.H.: Phys. C 483, 51 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Feng, W.J., Ma, P., Li, Q.H., Liu, J.X.: J. Supercond. Nov. Magn. 26, 539 (2013)CrossRefGoogle Scholar
  22. 22.
    Dimos, D., Chaudhari, P., Mannhart, J., LeGoues, F.K. Phys. Rev. Lett. 61, 219 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Hirth, J.B., Lothe, J.: Theory of Dislocations. McGraw-Hill, New York (1968)Google Scholar
  24. 24.
    Sutton, A.P., Balluffi, R.W.: Interfaces in Crystalline Materials. Clarendon, Oxford (1995)Google Scholar
  25. 25.
    Graser, S., Hirschfeld, P.J., Kopp, T., Gutser, R., Andersen, B.M., Mannhart, J.: Nat. Phys. 6, 609 (2010)CrossRefGoogle Scholar
  26. 26.
    Pande, C.S., Suenaga, M.: Appl. Phys. Lett. 29, 443 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    Polyanskii, A.A., Gurevich, A., Pashiski, A.E., Heinig, N.F., Redwing, R.D., Nordman, J.E., Larbalestier, D.C.: Phys. Rev. B 53, 8687 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Jooss, C., Albrecht, J., Kuhn, H., Leonhardt, S., Kronmuller, H.: Rep. Prog. Phys. 65, 651 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Gou, X.F., Zhu, G.: Chin. Phy. Lett. 32, 037401 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    van der Lann, D.C., Haugan, T.J., Barnes, P.N., Abraimov, D., Kametani, F., Larbalestier, D.C., Rupich, M.W.: Supercond. Sci. Technol. 23, 014004 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    van der Lann, D.C., Ekin, J.W.: Appl. Phys. Lett. 90, 052506 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Yue, D., Zhang, X., Zhou, J., Zhou, Y.L.: Appl. Phys. Lett. 103, 232602 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Engineering MechanicsHohai UniversityNanjingPeople’s Republic of China
  2. 2.College of Mechanical EngineeringZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations