Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 9, pp 2221–2224 | Cite as

An Exponential Model for Critical Current Density Through a Low-Angle Grain Boundary in a High-T c Superconductor

  • Feng Xue
  • Xiaofan Gou
Letter

Abstract

An analytical investigation is presented to display the distribution of critical current flow through a low-angle grain boundary in a high-T c superconductor such as YBCO or Bi-2212 film. When a superconductor is subjected to a transport current or a magnetic field, the fluxoids are redistributed between the dislocations which comprise a low-angle grain boundary. A model considering the elastic interaction between a flux line and an edge dislocation is developed in this paper. Results of our model are consistent with those of the classic exponential model, while for high-angle grain boundaries with the misorientation angles 𝜃 > 4, this model is invalid. It is helpful by using our model to understand the mechanisms of the effect of low-angle grain boundaries on critical current density.

Keywords

Critical current density Grain boundary Dislocation 

Notes

Acknowledgments

This research was partially funded by the Natural Science Foundation of China (Nos. 11402073 and 11372096), the China Postdoctoral Science Foundation (No. 2013M531260), the Fund of Natural Science Foundation of Jiangsu Province (No. BK20130824), and the Program for Research Fund for the Doctoral Program of Higher Education of China.

References

  1. 1.
    Dimos, D., Chaudhari, P., Mannhart, J., LeGoues, F.K.: Phys. Rev. Lett. 61, 219 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Hirth, J.B., Lothe, J.: Theory of Dislocations. McGraw-Hill, New York (1968)Google Scholar
  3. 3.
    Sutton, A.P., Balluffi, R.W.: Interfaces in Crystalline Materials. Clarendon, Oxford (1995)Google Scholar
  4. 4.
    Hilgenkamp, H., Mannhart, J.: Rev. Mod. Phys. 74, 485–549 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Dimos, D., Chaudhari, P., Mannhart, J., LeGoues, F.K.: Phys. Rev. Lett. 61, 219–222 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    Chaudhari, P., Dimos, D., Mannhart, J.: Critical currents in single-crystal and bicrystal films. In: Bednorz, J.G., Muller, K.A. (eds.) Earlier and Recent Aspects of Superconductivity, pp. 201–207. Springer, Berlin (1990)Google Scholar
  7. 7.
    Gurevich, A., Pashitskii, E.A.: Phys. Rev. B 57, 13878 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Graser, S., Hirschfeld, P.J., Kopp, T., Gutser, R., Andersen, B.M., Mannhart, J.: Nat. Phys. 6, 609 (2010)CrossRefGoogle Scholar
  9. 9.
    Campbell, A.M., Evetts, J.E.: Adv. Phys. 21, 199–428 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    Pande, C.S., Suenaga, M.: Appl. Phys. Lett. 29, 443 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, H.Y., Pande, C.S.: J. Appl. Phys. 104, 043917 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Jiang, L., Xu, W.W., Hua, T., Yu, M., An, D.Y., Chen, J., Jin, B.B., Kang, L., Wu, P.H.: Sci. China Technol. Sci. 58, 493–498 (2015)CrossRefGoogle Scholar
  13. 13.
    Gou, X.F., Zhu, G.: Chin. Phy. Lett. 32, 037401 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    van der Lann, D.C., Haugan, T.J., Barnes, P.N., Abraimov, D., Kametani, F., Larbalestier, D.C., Rupich, M.W.: Supercond. Sci. Technol. 23, 014004 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    van der Lann, D.C., Ekin, J.W.: Appl. Phys. Lett. 90, 052506 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Yue, D., Zhang, X., Zhou, J., Zhou, Y.: Appl. Phys. Lett. 103, 232602 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Carmody, M., Marks, L.D., Merkle, K.L.: Phys. C 370, 228–238 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Wolf, F.A., Graser, S., Loder, F.: Phys. Rev. Lett. 108, 117002 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Klie, R.F., Buban, J.P., Varela, M., Franceschetti, A., Jooss, C., Zhu, Y., Browning, N.D., Pabtelides, S.T., Pennycook, J.: Nat. Lett. 435, 475–478 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Dew-Hughes, D.: Low Temp. Phys. 27, 967–979 (2001)CrossRefGoogle Scholar
  21. 21.
    Coffey, M.W.: Phys. Rev. B 49, 9774 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    Ovid’ko, I.A.: J. Phys.: Condens. Matter 13, L97–L103 (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Engineering MechanicsHohai UniversityNanjingPeople’s Republic of China

Personalised recommendations