Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 11, pp 2813–2819 | Cite as

Structural, Conductivity, and Dielectric Properties of Co0.5Mg0.5La0.1Fe1.9O4 Ferrite Nanoparticles

  • Y. Köseoğlu
  • E. Şentürk
  • V. Eyüpoğlu
  • T. Şaşmaz Kuru
  • M. Hashim
  • S. S. Meena
Original Paper


The ferrite-based Co0.5Mg0.5La0.1Fe1.9O4 nanoparticle system has been synthesized by using the chemical co-precipitation technique. XRD and SEM were used for the structural and morphological characterization of the nanoparticles. The XRD analysis of the synthesized samples confirmed the formation of the single-phase cubic spinel phase without any impurity or secondary phases, and the average crystallite size and lattice parameters were found as 11.89 nm and 8.376 nm, respectively. The cation distribution obtained is found as (Mg0.19Fe0.81)A(Mg0.31Fe1.09Co0.5La0.1)BO4 from Rietveld refinement. The dielectric properties of the sample have been investigated in the frequency range of 20 Hz to 1 MHz. The DC and AC conductivity results obtained from the experiments are explained by the Verwey and correlated barrier hopping (CBH) models, respectively. The optical band gap energy of the sample is found as 0.24 eV. The results denoted the semiconductor nature of the sample, and the sample is a good candidate for applications in high-frequency transformers used for different purposes in the electronics industry.


Co-precipitation Dielectric constant Conductivity Ferrites Nanoparticles 


  1. 1.
    Goldman, A.: Modern ferrite technology, 2nd edn. Springer, New York (2006)Google Scholar
  2. 2.
    Smit, J., Wijn, H.P.G.: Ferrites, Philips Technical Library, p 140. Eindhoven, Netherlands (1959)Google Scholar
  3. 3.
    Shirsath, S.E., Kadam, R.H., Gaikwad, A.S., Ghasemi, A., Morisako, A.: Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J. Magn. Magn. Mater. 323, 3104–3108 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Bayoumy, W.A., Gabal, M.A.: Synthesis characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite. J. Alloys Compd. 506, 205–209 (2010)CrossRefGoogle Scholar
  5. 5.
    Alimuddin, H.M., Kumar, S., Ali, S., Koo, B.H., Chung, H., Kumar R.: Structural, Magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles. J. Alloys Compd. 511, 107–114 (2012)CrossRefGoogle Scholar
  6. 6.
    Li, X.D., Yang, W.S., Li, F., Evans, D.G., Duan, X.: Stoichiometric synthesis of pure NiFe2O4 spinel from layered double hydroxide precursors for use as the anode material in lithium-ion batteries. J. Phys. Chem. Solids 67, 1286–1290 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Baruwati, B., Rana, R.K., Manorama, S.V.: Further insights in the conductivity behavior of nanocrystalline NiFe2O4. J. Appl. Phys. 101, 014302 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Yang, H., Zhang, X., Ao, W., Qiu, G.: Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Mater. Res. Bull. 39, 833–837 (2004)CrossRefGoogle Scholar
  9. 9.
    Jadhav, S.S., Shirsath, S.E., Toksha, B.G., Patange, S.M., Shengule, D.R., Jadhav, K.R.: Structural and electric properties of zinc substituted NiFe2O4 nanoparticles prepared by co-precipitation method. Phys. B Cond. Matt. 405, 2610–2614 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Hessien, M.M., et al.: Synthesis and characterization of lithium ferrite by oxalate precursor route. J. Magn. Magn Mater. 320, 2800–2807 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, B., Rao, G., Wang, S., Lan, Y., Pan, L., Zhang X.: Facile synthesis and characterization of Mn3O4 nanoparticles by auto-combustion method. Mater. Lett. 154, 160–162 (2015)CrossRefGoogle Scholar
  12. 12.
    Mane, D.R., Birajdar, D.D., Patil, S., Shirsath, S.E., Kadam, R.H.: Redistribution of cations and enhancement in magnetic properties of sol–gel synthesized Cu0.7−xCoxZn0.3Fe2O4 (0 x0.5). J. Sol-gel Sci. Technol. 58, 70–79 (2011)CrossRefGoogle Scholar
  13. 13.
    Sharifi, I., Shokrollahi, H., Doroodmand, M.M., Safi, M.: Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater. 324, 1854–1861 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Parra, M.R., Haque, F.Z.: Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 3(4), 363–369 (2014)CrossRefGoogle Scholar
  15. 15.
    Tan, M., Köseoğlu, Y., Alan, F., Şentürk, E.: Overlapping Large Polaron Tunneling Conductivity and giant dielectric constant in Ni0.5Zn0.5Fe1.5Cr0.5O4 nanoparticles (NPs). J Overlapping Large Polaron Tunneling Alloys Compd. 509, 9399–9405 (2011)CrossRefGoogle Scholar
  16. 16.
    Köseoğlu, Y.: Structural, magnetic, electrical and dielectric properties of MnxNi1−xFe2O4 spinel nanoferrites prepared by PEG assisted hydrothermal method. Ceram. Int. 39, 4221–4230 (2013)CrossRefGoogle Scholar
  17. 17.
    Köseoğlu, Y.: Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique. Ceram. Int. 41, 6417–6423 (2015)CrossRefGoogle Scholar
  18. 18.
    Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: Effect of Nd3+ substitution on structural and electrical properties of nanocrystalline zinc ferrite. J. Magn. Magn. Mater. 322, 2777–2781 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Li, Q., Wang, W., Yongfei W.: Fabrication and characterization of Ni0.5Zn0.5Fe2O4 nanofibers. J Alloys Compd. 494, 315–318 (2010)CrossRefGoogle Scholar
  20. 20.
    Ashiq, M.N., Bibi, N., Malana, M.A.: Effect of Sn–Ni substitution on the structural, electrical and magnetic properties of mixed spinel ferrites. J. Alloys Compd. 490, 594–597 (2010)CrossRefGoogle Scholar
  21. 21.
    Selvana, R.K., Augustin, C.O., Sepelak, V., Berchmans, L.J., Sanjeeviraja, C., Gedanken A.: Synthesis and characterization of CuFe2O4/CeO2 nanocomposites. Mater Chem. Phys. 112, 373–380 (2008)CrossRefGoogle Scholar
  22. 22.
    Şentürk, E., Köseoğlu, Y., Şaşmaz, T., Alan, F., Tan, A.N.M.: RC circuit and conductivity properties of Mn0.6Co0.4Fe2O4 nanocomposite synthesized by hydrothermal method. J Alloys Compd. 578, 90–95 (2013)CrossRefGoogle Scholar
  23. 23.
    Jonscher, A.K.: The ‘universal’ dielectric response. Nature 267, 673–679 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    El Hiti, M.A.: Dielectric behavior and ac electrical conductivity of Zn-substituted Ni-Mg ferrites. J. Magn. Magn. Dielectr. Behav. Mater. 164, 187–196 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Mohammed, K.A., Al-Rawas, A.D., Gismelseed, A.M., Sellai, A., Widatallah, H.M., Yousif, A., Elzain, M.E., Shongwe, M.: Infrared and structural studies of Mg1−xZnxFe2O4 ferrites. Phys. B 407, 795–804 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Singh, N., Agarwal, A., Sanghi S.: Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr. Appl Dielectr. Phys. 11, 783–789 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Zhang, C.F., Zhong, X.C., Yu, H.Y., Liu, Z.W., Zeng, D.C.: Effects of cobalt doping on the microstructure and magnetic properties of Mn–Zn ferrites prepared by the co-precipitation method. Phys. B 404, 2327–2332 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Sobiam, I., Soibam, I.B., Phanjoubam, S., Radhapiyari, L.: Dielectric properties of Ni substituted Li–Zn ferrites. Phys. B 405, 2181–2184 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Meaz, T.M., Attia, S.M., Abo El Ata, A.M.: Effect of tetravalent titanium ions substitution on the dielectric properties of Co–Zn ferrites. J. Magn. Magn. Mater. 257, 296–305 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Elliott, S.R.: A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Y. Köseoğlu
    • 1
  • E. Şentürk
    • 2
  • V. Eyüpoğlu
    • 3
  • T. Şaşmaz Kuru
    • 2
    • 4
  • M. Hashim
    • 5
  • S. S. Meena
    • 6
  1. 1.Department of Primary Education, Faculty of EducationSuleyman Demirel UniversityIspartaTurkey
  2. 2.Department of PhysicsSakarya UniversityEsentepeTurkey
  3. 3.Department of ChemistryÇankırı Karatekin UniversityUluyazı CampusTurkey
  4. 4.Vocational School of Health Services, Radiotherapy ProgrammeOkan UniversityIstanbulTurkey
  5. 5.Department of PhysicsAligarh Muslim UniversityAligarhIndia
  6. 6.Solid State Physics Division, Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations