Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 10, pp 2523–2534 | Cite as

Structure, Microstructure, Magnetic, Electromagnetic, and Dielectric Properties of Nanostructured Mn–Zn Ferrite Synthesized by Microwave-Induced Urea–Nitrate Process

  • Z. Maleknejad
  • Kh. Gheisari
  • A. Honarbakhsh Raouf
Original Paper


In this work, the effect of urea-to-nitrate molar ratio on the synthesis and properties of Mn0.5Zn0.5Fe2O4 ferrite prepared by microwave-induced combustion method has been studied. The product powders synthesized at three different molar ratios of urea to nitrate (U/N ratio), varying from 0.58 to 1.08. X-ray diffraction patterns confirm formation of a spinel-type structure of ferrite and also hematite in the as-synthesized powders. The average of particle size is found to be in the range 30–80 nm. The values of saturation magnetization and permeability are increased with the increase in U/N ratio. Dielectric parameters were measured as a function of frequency. The real and imaginary parts of dielectric constant are found to decrease with the increase in frequency, while the ac conductivity is found to increase with increasing frequency. The complex impedance analysis shows only one semicircle indicating the predominant effect of grain boundary property of the material.


Mn–Zn ferrite Nanocrystalline Urea–nitrate combustion process Dielectric constant Impedance spectroscopy 



The authors would like to extend their gratitude to Shahid Chamran University and Semnan University for providing support to this research.


  1. 1.
    Cullity, B.D., Graham, C.D.: Introduction to magnetic material, 2nd edn. Wiley, Inc., New Jersey (2009)Google Scholar
  2. 2.
    Zapata, A., Herrera, G.: Effect of zinc concentration on the microstructure and relaxation frequency of Mn-Zn ferrites synthesized by solid state reaction. Ceram. Int. 39, 7853–7860 (2013)CrossRefGoogle Scholar
  3. 3.
    Costa, A.C.F.M., Silva, V.J., Xin, C.C., Vieira, D.A., Cornejo, D.R., Kiminami, R.H.G.A.: Effect of urea and glycine fuels on the combustion reaction synthesis of Mn–Zn ferrites: evaluation of morphology and magnetic properties. J. Alloys Compd. 495, 503–505 (2010)CrossRefGoogle Scholar
  4. 4.
    Mathew, D.S., Juang, R.S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)CrossRefGoogle Scholar
  5. 5.
    Hu, P., Yang, H., Pan, D., Wang, H., Tian, J., Zang, Sh., Wang, X., Volinsky, A.A.: Heat treatment effects on microstructure and magnetic properties of Mn–Zn ferrite powders. J. Magn. Magn. Mater. 322, 173–177 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Ranjith Kumar, E., Jayaprakash, R.: The role of fuel concentration on particle size and dielectric properties of manganese substituted zinc ferrite nanoparticles. J. Magn. Magn. Mater. 366, 33–39 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Deng, S., Li, K., Peng, C., Chen, D.: Effect of milling on the properties of high permeability Mn-Zn ferrite powders. Proced. Eng. 27, 644–651 (2011)CrossRefGoogle Scholar
  8. 8.
    Limin, D., Zhidong, H., Yaoming, Z., Ze, W., Xianyou, Z.: Preparation and sinterability of Mn-Zn ferrite powders by Sol-Gel method. J. Rare. Earth 24, 54–56 (2006)CrossRefGoogle Scholar
  9. 9.
    Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., Jeyadevan, B.: Mn–Zn ferrite nanoparticles for ferrofluid preparation: study on thermal–magnetic properties. J. Magn. Magn. Mater. 298, 83–94 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Praveena, K., Sadhana, K., Murthy, S.R.: Elastic behaviour of microwave hydrothermally synthesized nanocrystalline Mn1−xZnx ferrites. Mater. Res. Bull. 47, 1096–1103 (2012)CrossRefGoogle Scholar
  11. 11.
    Syue, M., Wei, F., Chou, C., Fu, C.: Magnetic, dielectric, and complex impedance properties of nanocrystalline Mn–Zn ferrites prepared by novel combustion method. Thin Solid Films 519, 8303–8306 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Manikandan, A., Vijaya, J.J., Kennedy, L.J., Bououdia, M.: Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method. Mol. Struct. 1035, 332–340 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Tonioli, J.C., Lima, M.D., Takimi, A.S., Bergman, C.P.: Synthesis of aluminia powders by the glycine-nitrate combustion process. Mater. Res. Bull. 40, 561–571 (2005)CrossRefGoogle Scholar
  14. 14.
    Hajarpour, S., Gheisari, Kh., Honarbakhsh Raouf, A.: Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process. J. Magn. Magn. Mater. 329 (2013)Google Scholar
  15. 15.
    Pert HighScore Plus v1.0d/2003, PANalytical B.V., Almelo, The NetherlandsGoogle Scholar
  16. 16.
    Patil, K.C., Hegde, M.S.: Chemistry of nanocrystalline oxide materials. World Scientific Publishing Co. Pte. Ltd., London (2008)CrossRefGoogle Scholar
  17. 17.
    Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J.: Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 6–12 (1990)CrossRefGoogle Scholar
  18. 18.
    Hwang, C., Tsai, J., Huang, T., Peng, C., Chen, S.: Combustion synthesis of Ni–Zn ferrite powder-influence of oxygen balance value. J. Solid State Chem. 178, 382–389 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Tahmasebi, K., Paydar, M.H.: The effect of starch addition on solution combustion synthesis of Al2O3–ZrO2 nanocomposite powder using urea as fuel. Mater. Chem. Phys. 109, 156–163 (2008)CrossRefGoogle Scholar
  20. 20.
    Stern, K.H.: High temperature properties and decomposition of inorganic salts, part 3. nitrates and nitrites. J. Phys. Chem. 1(3), 747–772 (1972)Google Scholar
  21. 21.
    Ranjith kumar, E., Jayaprakash, R., Seehra, M.S., Prakash, T., Sanjay, K.: Effect of α-Fe2O3 phase on structural, magnetic and dielectric properties of Mn–Zn ferrite nanoparticles. J. Phys. Chem. Solids 74, 943 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Ding, C., Yin, W., Cao, L., Zeng, Y.: Synthesis of manganese zinc ferrite nanopowders prepared by a microwave-assisted auto-combustion method: influence of sol gel chemistry on microstructure. Mater. Sci. Semicond. Process. 23, 50–57 (2014)CrossRefGoogle Scholar
  23. 23.
    Borhan, N., Gheisari, K.: Structural and magnetic properties of nanocrystalline lithium–zinc ferrite synthesized by microwave-induced glycine–nitrate process. J. Supercond. Nov. Magn. 27, 1483–1490 (2014)CrossRefGoogle Scholar
  24. 24.
    Gheisari, K., Bhame, S.D., Oh, J.T., Javadpour, S.: Comparative studies on the structure and magnetic properties of Ni–Zn ferrite powders prepared by glycine-nitrate auto-combustion process and solid state reaction method. J. Supercond. Nov. Magn. 26, 477–483 (2013)CrossRefGoogle Scholar
  25. 25.
    Kodama, R.H.: Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Gheisari, Kh., Shahriari, Sh., Javadpour, S.: Structural evolution and magnetic properties of nanocrystalline 50 Permalloy powders prepared by mechanical alloying. J. Alloys Compd. 574, 71–82 (2013)CrossRefGoogle Scholar
  27. 27.
    Buschow, K.H.J, De Boer, F.R.: Physics of magnetism and magnetic materials. Kluwer Academic Publishers, New York (2004)Google Scholar
  28. 28.
    Akther Hossain, A.K.M., Mahmud, S.T., Seki, M., Kawai, T., Tabata, H.: Structural, electrical transport, and magnetic properties of Ni1−xZnxFe2O4. J. Magn. Magn. Mater. 312, 210–219 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Snelling, E.C.: Ferrites for inductors and transformers. Research Studies Press, New York (1983)Google Scholar
  30. 30.
    Goldman, A.: Modern ferrite technology, 2nd edn. Springer, New York (2006)Google Scholar
  31. 31.
    Mangalaraja, R.V., Ananthakmar, S., Manohar, P., Gnanam, F.D., Awano, M.: Characterization of Mn0.8Zn0.2Fe2O4 synthesized by flash combustion technique. Mater. Sci. Eng. A 367, 301–305 (2004)CrossRefGoogle Scholar
  32. 32.
    Thakur, A., Mathur, P., Singh, M.: Study of dielectric behaviour of Mn–Zn nano ferrites. J. Phys. Chem. Solids 68, 378–381 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Singh, N., Agarwal, A., Sanghi, S.: Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn-Li ferrites. Curr. Appl. Phys. 11, 783–789 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Hussain, T., Siddiqi, S.A., Atiq, S., Awan, M.S.: Induced modify cations in the properties of Sr doped BiFeO3 multiferroics. Int. Mater. 23, 487–492 (2013)Google Scholar
  35. 35.
    Livingston, J.D.: Electronic properties of engineering materials. Wiley, Inc., New York (1999)Google Scholar
  36. 36.
    Verma, K., Kumar, A., Varshney, D.: Dielectric relaxation behavior of AxCo1−xFe2O4 (A = Zn, Mg) mixed ferrites. J. Alloys Compd. 526, 91–97 (2012)CrossRefGoogle Scholar
  37. 37.
    Batoo, K.M., Kumar, S., Lee, C.G.: Alimuddin: Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr. Appl. Phys. 9, 1397–1406 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Ghatak, S., Sinha, M., Meikap, A.K., Pradhan, S.K.: Alternate current conductivity and dielectric properties of nonstoichiometric nanocrystalline Mg–Zn ferrite below room temperature. Phys. E 42, 1397–1405 (2010)CrossRefGoogle Scholar
  39. 39.
    Patankar, K.K., Kanade, S.A., Padalkar, D.S., Chougule, B.K.: Complex impedance analyses and magnetoelectric effect in ferrite–ferroelectric composite ceramics. Phys. Lett. A 361, 472–477 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Hankare, P.P., Sankpal, U.B., Patil, R.P., Jadhav, A.V., Garadkar, K.M., Chougule, B.K.: Magnetic and dielectric studies of nanocrystalline zinc substituted Cu–Mn ferrites. J. Magn. Magn. Mater. 323, 389–393 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Z. Maleknejad
    • 1
    • 2
  • Kh. Gheisari
    • 1
  • A. Honarbakhsh Raouf
    • 2
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringShahid Chamran UniversityAhvazIran
  2. 2.Department of Materials, Faculty of EngineeringSemnan UniversitySemnanIran

Personalised recommendations