Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 10, pp 2579–2585 | Cite as

The Magnetic States and Processes of Magnetization Reversal of One-Dimensional Arrays of Ferromagnetic Nanoparticles

Original Paper


The properties of a one-dimensional array of single-domain ferromagnetic particles are analyzed using the original simulation method. Despite the simplicity of the system, it is shown that its properties are quite diverse. Magnetic configuration and magnetization curves are studied in the whole range of fields of interaction including distances wherein the interaction could be still considered as a dipole-dipole. Along with a purely academic interest, the results may be of practical value in the field of creation of new instruments based on magneto-resistance effect. A comparison with experiments showed that the model adequately reflects the properties of real systems.


Magnetostatic interaction Single-domain particles Ferromagnetism Simulation 



The work is partially supported by the Grant of Russian Federation Ministry of Education and Science No. 559.2014


  1. 1.
    Fraerman, A.A., Sapozhnikov, M.V.: Hysteresis model with dipole interaction: devil’s staircase like shape of the magnetization curve. Phys. Rev. B 65, 184433 (2002). doi: 10.1103/PhysRevB.65.184433 ADSCrossRefGoogle Scholar
  2. 2.
    Adeyeye, A.O., Jain, S.: Coupled periodic magnetic nanostructures. J. Appl. Phys. 109, 07B903 (2011). doi: 10.1063/1.3540253 CrossRefGoogle Scholar
  3. 3.
    Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc. A (London) 240, 599 (1948)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Chang, J., Gribkov, B.A., Kim, H., Koo, H., Han, S.H., Mironov, V.L., Fraerman, A.A.: Magnetization behavior of Co nanodot array. Journal of Magnetics 12(1), 17 (2007)CrossRefGoogle Scholar
  5. 5.
    Suh, J., Chang, J., Kim, E.K., Sapozhnikov, M.V., Mironov, V.L., Fraerman, A.A.: Magnetotransport properties of GaMnAs with ferromagnetic nanodots. Phys. stat. sol. (a) 205(5), 1043 (2008). doi: 10.1002/pssa.200776457 ADSCrossRefGoogle Scholar
  6. 6.
    Forrester, D.M., Kürten, K.E., Kusmartsev, F.V.: Magnetic cellular automata and the formation of glassy and magnetic structures from a chain of magnetic particles. Phys. Rev. B 75, 014416 (2007). doi: 10.1103/PhysRevB.75.014416 ADSCrossRefGoogle Scholar
  7. 7.
    Annunziata, M.A., Menzel, A.M., Löwen, H.: Hardening transition in a one-dimensional model for ferrogels. J. Chem. Phys. 138, 204906 (2013). doi: 10.1063/1.4807003 ADSCrossRefGoogle Scholar
  8. 8.
    Belokon’, V.I., Nefedev, K.V., Goroshko, O.A., Tkach, O.I.: Superparamagnetism in the 1D Ising model. Bulletin of the Russian Academy of Sciences: Physics 74(10), 1413 (2010). doi: 10.3103/S1062873810100266 ADSCrossRefMATHGoogle Scholar
  9. 9.
    Landau, L.D., Lifshitz, E.M.: Theoretical physics. Electrodynamics of Continuous Media 8(2nd ed.), M. Science (1982)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Far Eastern Federal UniversityVladivostokRussia
  2. 2.Vladivostok State University Economics and ServiceVladivostokRussia

Personalised recommendations