Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 9, pp 2401–2406 | Cite as

Effect of Sodium Substitution on Structural and Magnetic Properties of KFe2−y Se2

  • M. Gürsul
  • B. Özçelik
  • A. Ekicibil
  • M. Liu
  • A. I. Boltalin
  • I. V. Morozov
Original Paper


We have synthesized the superconducting K1−x Na x Fe2−y Se2 (x = 0.07 and 0.25) crystal by using the flux technique. SEM images demonstrate that two samples consist of successive plate-like surfaces oriented into ab plane. EDS analysis yields the average compositions as (Na0.20K0.80)0.96Fe1.78Se2for x = 0.07 and (Na0.33K0.67)0.96Fe1.73Se2 for x = 0.25. XRD pattern gives the (00 ) peaks. The main peaks are indexed to the I4/m space group corresponding to reflected intensities from (002), (006), (008), and (0010) planes related to the peaks of the phase K2Fe4Se5. The lattice parameters are calculated as a = 8.701(4) and c = 14.185(2) Å for x = 0.07, and a = 8.689(3) and c = 14.054(4) Å for x = 0.25. ZFC magnetization measurement exhibits a very sharp transition which indicates the presence of superconductivity in the crystal. The superconducting transition temperatures, T c , obtained from magnetization measurements are estimated to be 31.0 and 28.4 K for x = 0.07 and 0.25, respectively. The critical current value, J c (0), deduced from the MH loops are approximately 2.8 ×104 A/cm 2 for x = 0.07 and 2.87 ×102 A/cm 2 for x = 0.25 at 5 K. The volume pinning force, F p , of x = 0.07 sample is found larger than that of the x = 0.25 one.


Iron-based superconductors Crystal Growth SEM XRD Magnetization Magnetic hysteresis 



This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 112T767 and Research Fund of Cukurova University, Adana, Turkey, under grant contract no.: FDK-2015-4036. LM, IM, and AB would like to acknowledge the financial support by the Volkswagen Foundation and the Russian Foundation for Basic Research (Grant No. 15-03-99628). The authors wish to thank Dr. Sabine Wurmehl, Michael Schulze and Prof. B. Büchner, from IFW Dresden (Germany) for their hospitality and support during the preparation of the sample.


  1. 1.
    Hsu, F.C., Luo, J.Y., The, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Hauang, Y.L., Chu, Y.Y., Yan, D.C., Wu, M.K.: Proc. Natl. Acad. Sci. USA 105, 14262 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Guo, J., Jin, S., Wang, G., Wang, S., Zhu, K., Zhou, T., He, M., Chen, X.: Phys. Rev. B 82, 180520(R) (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Mizuguchi, Y., Takeya, H., Kawasaki, Y., Ozaki, T., Tsuda, S., Yamaguchi, T., Takano, Y.: Appl. Phys. Lett. 98, 042511 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Krzton-Maziopa, A., Shermadini, Z., Pomjakushina, E., Pomjakushina, V., Bendele, M., Amoto, A., Khasanov, R., Luetkens, H., Conder, K.: J. Phys.: Condens. Matter 23, 052203 (2011)ADSGoogle Scholar
  5. 5.
    Wang, A.F., Ying, J.J., Yan, Y.J., Liu, R.H., Luo, X.G., Li, Z.Y., Wang, X.F., Zhang, M., Ye, G.J., Cheng, P., Xiang, Z.J., Chen, X.H.: Phys. Rev. B 83, 060512 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, H.D., Dong, C.H., Li, Z.J., Mao, Q.H., Shu, S.S., Feng, C.M., Yuan, H.Q., Fang, M.H.: EPL 93, 47004 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Fang, M.H., Wang, H.D., Dong, C.H., Li, Z.J., Feng, C.M., Chen, J., Yuan, Q.H.: EPL 94, 27009 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Bao, W., Huang, Q., Chen, G.F., Green, M.A., Wang, D.M., He, J.B., Wang, X.Q., Qiu, Y.: Chin. Phys. Lett. 28, 086104 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Yang, L.X., Xu, M., Ye, Z.R., Chen, F., He, C., Jiang, J., Xie, B.P., Ying, J.J., Wang, X.F., Chen, X.H., Hu, J.P., Feng, D.L.: Nat. Mater. 10, 273 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Kamihara, Y.T.W., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  11. 11.
    Ying, T.P., Chen, X.L., Wang, G., Jin, S.F., et al.: Scientific Reports 01/2012; 2:426. doi: 10.1038/srep00426
  12. 12.
    Ozaki, T., Takeya, H., Deguchi, K., Demura, S., Hara, H., Watanabe, T., James Denholme, S., Okazaki, H., Fujioka, M., Yokota, Y., Yamaguchi, T., Takano, Y.: Supercond. Sci. Technol. 26, 055002 (2013)Google Scholar
  13. 13.
    Fang, M.-H., Wang, H.-D., Dong, C.-H., Li, Z.-J., Feng, C.-M., Chen, J., Yuan, H.Q.: Europhys. Lett 94, 27009 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Lei, H., Petrovic, C.: Phys. Rev. B 84, 212502 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Zhou, W., Li, X., Zhou, X., Yuan, F.F., Ding, Y., Zhuang, J.C., Sun, Y., Zhou, H.L., Shi, Z.X.: J. Low Temp Phys. 175, 543 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Güler, N.K., Özçelik, B., Ekicibil, A., Onar, K., Yaknc, M.E., Okazaki, H., Takeya, H., Takano, Y.: Mater. Chem. Phys. 164, 157 (2015)CrossRefGoogle Scholar
  17. 17.
    Trifonov, A.S., Ovchenkov, Y.A., Presnov, D.E., Belosludov, R., Boltalin, A.I., Liu, M., Morozov, I.V., Nejo, H., Vasiliev, A.N.: J. Appl. Phys. 116, 043904 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Ricci, A., Poccia, N., Joseph, B., Arrighetti, G., Barba, L., Plaisier, J., Campi, G., Mizuguchi, Y., Takeya, H., Takano, Y., Saini, N.L., Bianconi, A.: Supercond. Sci. Technol. 24, 082002 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Zavalij, P., Bao, W., Wang, X.F., Ying, J.J., Chen, X.H., Wang, D.M., He, J.B., Wang, X.Q., Chen, G.F., Hsieh, P.Y., Huang, Q., Green, M.A.: Phys. Rev. B. 83, 132509 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, Z., Song, Y.J., Shi, H.L., Wang, Z.W., Chen, Z., Tian, H.F., Chen, G.F., Guo, J.G., Yang, H.X., Li, J.Q.: Phys. Rev. B 83, 140505 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Song, Y.J., Wang, Z., Wang, Z.W., Shi, H.L., Chen, Z., Tian, H.F., Chen, G.F., Yang, H.X., Li, J.Q.: EPL 95, 37007 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Lei, H., Petrovic, C.: Phys. Rev. B 83, 184504 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Ryu, H., Lei, H., Frenkel, A.I., Petrovic, C.: Phys. Rev. B 85, 224515 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Lei, H., Petrovic, C.: arXiv:1110.5316 (2011)
  25. 25.
    Zhou, T., Chen, X., Guo, J., Jin, S., Wang, G., Lai, X., Ying, T., Zhang, H., Shen, S., Wang, S., Zhu, K., 2013: J. Phys.: Condens. Matter 25, 275701Google Scholar
  26. 26.
    Tan, D., Zhang, C., Xi, C., Ling, L., Zhang, L., Tong, W., Yu, Y., Feng, G., Yu, H., Pi, L., Yang, Z., Tan, S., Zhang, Y.: Phys. Rev. B: Condens. Matter Mater. Phys. 84, 014502 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Abdel-Hafiez, M., Grinenko, V., Aswartham, S., Morozov, I., Roslova, M., Vakaliuk, O., Johnston, S., Efremov, D.V., van den Brink, J., Rosner, H., Kumar, M., Hess, C., Wurmehl, S., Wolter, A.U.B., Büchner, B., Green, E.L., Wosnitza, J., Vogt, P., Reifenberger, A., Enss, C., Hempel, M., Klingeler, R., Drechsler, S.-L.: Phys. Rev. B: Condens. Matter Mater. Phys. 87, 180507(R) (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Grinenko, V., Efremov, D.V., Drechsler, S.-L., Aswartham, S., Gruner, D., Roslova, M., Morozov, I., Nenkov, K., Wurmehl, S., Wolter, A.U.B., Holzapfel, B., Büchner, B.: Phys. Rev. B:Condens. Matter Mater. Phys. 89, 060504(R) (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Roslova, M., Kuzmichev, S., Kuzmicheva, T., Ovchenkov, Y., Liu, M., Morozov, I., Boltalin, A., Shevelkov, A., Chareev, D., Vasiliev, A.: CrystEngComm 16, 6919 (2014)CrossRefGoogle Scholar
  30. 30.
    Guo, et al.: Phys. Rev. B 83, 060512(R) (2011)CrossRefGoogle Scholar
  31. 31.
    Bean, C.P.: Rev. Mod. Phys. 36, 31 (1964)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Gürsul
    • 1
  • B. Özçelik
    • 1
  • A. Ekicibil
    • 1
  • M. Liu
    • 2
    • 3
  • A. I. Boltalin
    • 2
  • I. V. Morozov
    • 2
    • 3
  1. 1.Department of Physics, Faculty of Sciences and LettersÇukurova UniversityAdanaTurkey
  2. 2.Lomonosov Moscow State UniversityGSP-1MoscowRussian Federation
  3. 3.IFW-DresdenDresdenGermany

Personalised recommendations