Skip to main content
Log in

Dynamical Spin Structure Factors of Anisotropic Spin Ladder in a Longitudinal Magnetic Field

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have addressed the magnetic excitations of quasi-one-dimensional two-leg anisotropic antiferromagnetic spin ladder under the influence of longitudinal magnetic field. Such excitations can be obtained via the study of frequency behavior of dynamical spin structure factors. The original spin model hamiltonian can be transformed to a hard core bosonic gas using a generalized bond operator formalism. We have used the linear response theory within Green’s function approach to obtain the frequency behavior of both longitudinal and transverse dynamical spin structure factor in the gapful regime. The results show energy gap vanishes at critical magnetic field which depends on anisotropic parameters. We have also found the longitudinal spin structure factor shows a sharp single peak at a particular frequency. The position of this peak moves to lower frequencies with increase of both intersite and local anisotropy parameters. However, the effect of intersite anisotropy on the position of peak in the longitudinal structure factor is more remarkable compared to another one. Also the change of magnetic field shows no considerable effect on the behavior of longitudinal spin structure factor. Furthermore, we have studied the dependence of the transverse structure factor on frequency for different magnetic field and anisotropy parameters. Unlike longitudinal case, two separate peaks appears in the transverse spin structure. The enhancement of magnetic field causes that the peaks in the transverse structure factor become far away from each other. Also, the influences of both anisotropies on the spin excitation spectrum of transverse spin components have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dagotto, E., Rice, T. M.: Science 271, 618–623 (1996)

    Article  ADS  Google Scholar 

  2. Azuma, M., et al.: Phys. Rev. Lett 73, 3463 (1994)

    Article  ADS  Google Scholar 

  3. Chaboussant, G., et al.: Phys. Rev. B 55, 3046 (1997)

    Article  ADS  Google Scholar 

  4. Giamarchi, T., Tsvelik, A.M.: Phys. Rev. B 59, 11398 (1999)

    Article  ADS  Google Scholar 

  5. Furusaki, A., Zhang, S.C.: Phys. Rev. B 60, 1175 (1999)

    Article  ADS  Google Scholar 

  6. Yildirim, T., Harris, A.B., Entin-Wohlman, O., Aharony, A.: Phys. Rev. Lett 73, 2919 (1994)

    Article  ADS  Google Scholar 

  7. Stein, J., Entin-Wohlman, O., Aharony, A.: Phys. Rev. B 53, 775 (1996)

    Article  ADS  Google Scholar 

  8. Moriya, T. Phys. Rev. 91, 120 (1960)

    Google Scholar 

  9. Stein, J., Stein, J.: Phys. Rev. B 53, 785 (1996)

    Article  ADS  Google Scholar 

  10. Kiryukhin, V., Kim, Y.J., Thomas, K.J., Chou, F.C., Erwin, R.W., Huang, Q., Kastner, M. A., Birgeneau, R.J.: Phys. Rev. B 63, 144418 (2001)

    Article  ADS  Google Scholar 

  11. Yushankhai, V.Y.u., Hayn, R.: Europhys. Lett 47, 116 (1999)

    Article  ADS  Google Scholar 

  12. Patyal, B.R., Scott, B.L., Willett, R.D.: Phys. Rev. B 41, 1657–1663 (1990)

    Article  ADS  Google Scholar 

  13. Smkomski, R.: Journal of applied Physics 91, 8489 (2002)

    Article  ADS  Google Scholar 

  14. Hayward, C.A., Poilblank, D.: Phys. Rev. B 53, 11721–11728 (1996)

    Article  ADS  Google Scholar 

  15. Wang, X., Yu, L.: Phys. Rev. Lett 84, 5399–5402 (2000)

    Article  ADS  Google Scholar 

  16. Gu, Q., Yu, D.-K., Shen, J.-L.: Phys. Rev. B 60, 3009 (1999)

    Article  ADS  Google Scholar 

  17. Chitra, R., Giamarchi, T.: Phs. Rev. B 55, 5816 (1997)

    Article  ADS  Google Scholar 

  18. Barnes, T., Dagotto, E., Riera, J., Swanson, E.S.: Phys. Rev. B 47, 3196 (1993)

    Article  ADS  Google Scholar 

  19. Hong, T., Kim, Y.H., Hotta, C., Tremelling, G., Turnbull, M.M., Landee, C.P., Kang, H.-J., Christensen, N.B., Lefmann, K., Schmidt, K.P., Uhrig, G.S., Broholm, C.: Phys . Rev. Lett 105, 137207 (2010)

    Article  ADS  Google Scholar 

  20. Schmidiger, D., et al.: Rev. Phys. B 84, 144421 (2011)

    Article  Google Scholar 

  21. Kotov, N.V., Sushkov, O.P., Eder, R.: Phys. Rev. B 59, 6266 (1999)

    Article  ADS  Google Scholar 

  22. Kotov, N.V., Oitmaa, J., Weihong, Z.: Phys. Rev. B 59, 11377 (1999)

    Article  ADS  Google Scholar 

  23. Sushkov, O.P., Kotov, N.V.: Phys. Rev. Lett 81, 1941 (1998)

    Article  ADS  Google Scholar 

  24. Knetter, C., Schmidt, K.P., Gruninger, M., Uhrig, G.S.: Phys. Rev. Lett, 87, 167204 (2001)

    Article  ADS  Google Scholar 

  25. Normand, B., Ruegg, Ch.: Phys. Rev. B 83, 054415 (2011)

    Article  ADS  Google Scholar 

  26. Oitmaa, J., Singh, R.P., Zheng, W.: Phys. Rev. B 54, 1009 (1996)

    Article  ADS  Google Scholar 

  27. Rezania, H., Jesri, S.: J. Magn. Magn. Mater. 328, 96 (2013)

    Article  ADS  Google Scholar 

  28. Normand, B.: Acta Phys. Polon. 31, 3005 (2000)

    ADS  Google Scholar 

  29. Chubukv, A.: JETP Lett 49, 129–133 (1989)

    ADS  Google Scholar 

  30. Sachdev, S., Bhatt, R.N.: Phys. Rev. B 41, 9323–9329 (1990)

    Article  ADS  Google Scholar 

  31. Fetter, A.L., Walecka, J.D., Quantum Theory of Many Particle Systems. McGraw-Hill, New York (1971)

  32. Abrikosov, A., Gorkov, L., Dzyloshinskii, T.: Methods of Quantum Field Theory in Statistical Physics. Dover, New York (1975)

    Google Scholar 

  33. Rezania, H., Langari, A., Thalmeier, P.: Phys.Rev. B 79, 094401 (2009)

    Article  ADS  Google Scholar 

  34. Rezania, H., Langari, A., Thalmeier, P.: Phys.Rev. B 77, 094438 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rezania.

Appendix: Excitation Spectrum, Quasiparticle Weight, and Bogoliuobov Coefficients

Appendix: Excitation Spectrum, Quasiparticle Weight, and Bogoliuobov Coefficients

In this appendix, we present the final results for excitation spectrums and residue of quasiparticle excitation and Bogoliubov coefficients as

$$\begin{array}{@{}rcl@{}} {\Omega}(k)&=&\sqrt{(\frac{h}{2})^{2}+Z_{+}(k)Z_{-}(k)[(A_{k}+{\Sigma}_{n,+}(k,0)+g\mu_{B}B)(A_{k}+{\Sigma}_{n,-}(k,0)-g\mu_{B}B)-{B_{k}^{2}}]},\\ {\Omega}_{+(-)}(k)&=&+(-)\frac{h}{2}+{\Omega}(k), \\ h&\equiv&{\Sigma}_{n,+}(k,0)Z_{+}(k)-{\Sigma}_{n,-}(k,0)Z_{-}(k)-A_{k}(Z_{-}(k)-Z_{+}(k))\\&+&g\mu_{B}B(Z_{-}(k)+Z_{+}(k)), \\ {\Omega}_{k,z}&=&Z_{k,z}\sqrt{[A_{k,z}+{\Sigma}_{n,z}(k,0)]^{2}-[B_{k,z}]^{2}},\\ Z_{k,z}^{-1}&=&1-(\frac{\partial {\Sigma}(k,\omega)_{n,z}}{\partial \omega})_{\omega=0},\\ Z_{k,+(-)}^{-1}&=&1-(\frac{\partial {\Sigma}(k,\omega)_{+(-)}}{\partial \omega})_{\omega=0},\\ U_{k,z}^{2} (V_{k,z}^{2})&=&(-)\frac{1}{2}+\frac{Z_{k,z}[A_{k,z}+{\Sigma}_{n,z}(k,0)]}{2{\Omega}_{k,z}},\\U_{k,+(-)}^{2} &=&\frac{Z_{-(+)}(k,0)\left(A_{k}+{\Sigma}_{n,-(+)}(k,0)-(+)g\mu_{B}B\right)+(-)\frac{h}{2}+{\Omega}_{k}}{2{\Omega}_{k}}\\ V_{k,+(-)}^{2}&=&\frac{Z_{-(+)}(k,0)\left(A_{k}+{\Sigma}_{n,-(+)}(k,0)-(+)g\mu_{B}B\right)+(-)\frac{h}{2}-{\Omega}_{k}}{2{\Omega}_{k}} \end{array} $$
(B1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H. Dynamical Spin Structure Factors of Anisotropic Spin Ladder in a Longitudinal Magnetic Field. J Supercond Nov Magn 29, 2127–2139 (2016). https://doi.org/10.1007/s10948-016-3525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3525-z

Keywords

Navigation