Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 8, pp 2127–2139 | Cite as

Dynamical Spin Structure Factors of Anisotropic Spin Ladder in a Longitudinal Magnetic Field

  • H. Rezania
Original Paper
  • 70 Downloads

Abstract

We have addressed the magnetic excitations of quasi-one-dimensional two-leg anisotropic antiferromagnetic spin ladder under the influence of longitudinal magnetic field. Such excitations can be obtained via the study of frequency behavior of dynamical spin structure factors. The original spin model hamiltonian can be transformed to a hard core bosonic gas using a generalized bond operator formalism. We have used the linear response theory within Green’s function approach to obtain the frequency behavior of both longitudinal and transverse dynamical spin structure factor in the gapful regime. The results show energy gap vanishes at critical magnetic field which depends on anisotropic parameters. We have also found the longitudinal spin structure factor shows a sharp single peak at a particular frequency. The position of this peak moves to lower frequencies with increase of both intersite and local anisotropy parameters. However, the effect of intersite anisotropy on the position of peak in the longitudinal structure factor is more remarkable compared to another one. Also the change of magnetic field shows no considerable effect on the behavior of longitudinal spin structure factor. Furthermore, we have studied the dependence of the transverse structure factor on frequency for different magnetic field and anisotropy parameters. Unlike longitudinal case, two separate peaks appears in the transverse spin structure. The enhancement of magnetic field causes that the peaks in the transverse structure factor become far away from each other. Also, the influences of both anisotropies on the spin excitation spectrum of transverse spin components have been discussed.

Keywords

Spin Ladder Spin structure factor Anisotropy 

References

  1. 1.
    Dagotto, E., Rice, T. M.: Science 271, 618–623 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Azuma, M., et al.: Phys. Rev. Lett 73, 3463 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Chaboussant, G., et al.: Phys. Rev. B 55, 3046 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Giamarchi, T., Tsvelik, A.M.: Phys. Rev. B 59, 11398 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Furusaki, A., Zhang, S.C.: Phys. Rev. B 60, 1175 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Yildirim, T., Harris, A.B., Entin-Wohlman, O., Aharony, A.: Phys. Rev. Lett 73, 2919 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Stein, J., Entin-Wohlman, O., Aharony, A.: Phys. Rev. B 53, 775 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Moriya, T. Phys. Rev. 91, 120 (1960)Google Scholar
  9. 9.
    Stein, J., Stein, J.: Phys. Rev. B 53, 785 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Kiryukhin, V., Kim, Y.J., Thomas, K.J., Chou, F.C., Erwin, R.W., Huang, Q., Kastner, M. A., Birgeneau, R.J.: Phys. Rev. B 63, 144418 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Yushankhai, V.Y.u., Hayn, R.: Europhys. Lett 47, 116 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Patyal, B.R., Scott, B.L., Willett, R.D.: Phys. Rev. B 41, 1657–1663 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    Smkomski, R.: Journal of applied Physics 91, 8489 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Hayward, C.A., Poilblank, D.: Phys. Rev. B 53, 11721–11728 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, X., Yu, L.: Phys. Rev. Lett 84, 5399–5402 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Gu, Q., Yu, D.-K., Shen, J.-L.: Phys. Rev. B 60, 3009 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Chitra, R., Giamarchi, T.: Phs. Rev. B 55, 5816 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Barnes, T., Dagotto, E., Riera, J., Swanson, E.S.: Phys. Rev. B 47, 3196 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Hong, T., Kim, Y.H., Hotta, C., Tremelling, G., Turnbull, M.M., Landee, C.P., Kang, H.-J., Christensen, N.B., Lefmann, K., Schmidt, K.P., Uhrig, G.S., Broholm, C.: Phys . Rev. Lett 105, 137207 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Schmidiger, D., et al.: Rev. Phys. B 84, 144421 (2011)CrossRefGoogle Scholar
  21. 21.
    Kotov, N.V., Sushkov, O.P., Eder, R.: Phys. Rev. B 59, 6266 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Kotov, N.V., Oitmaa, J., Weihong, Z.: Phys. Rev. B 59, 11377 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Sushkov, O.P., Kotov, N.V.: Phys. Rev. Lett 81, 1941 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Knetter, C., Schmidt, K.P., Gruninger, M., Uhrig, G.S.: Phys. Rev. Lett, 87, 167204 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Normand, B., Ruegg, Ch.: Phys. Rev. B 83, 054415 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Oitmaa, J., Singh, R.P., Zheng, W.: Phys. Rev. B 54, 1009 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    Rezania, H., Jesri, S.: J. Magn. Magn. Mater. 328, 96 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Normand, B.: Acta Phys. Polon. 31, 3005 (2000)ADSGoogle Scholar
  29. 29.
    Chubukv, A.: JETP Lett 49, 129–133 (1989)ADSGoogle Scholar
  30. 30.
    Sachdev, S., Bhatt, R.N.: Phys. Rev. B 41, 9323–9329 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    Fetter, A.L., Walecka, J.D., Quantum Theory of Many Particle Systems. McGraw-Hill, New York (1971)Google Scholar
  32. 32.
    Abrikosov, A., Gorkov, L., Dzyloshinskii, T.: Methods of Quantum Field Theory in Statistical Physics. Dover, New York (1975)Google Scholar
  33. 33.
    Rezania, H., Langari, A., Thalmeier, P.: Phys.Rev. B 79, 094401 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Rezania, H., Langari, A., Thalmeier, P.: Phys.Rev. B 77, 094438 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Physics DepartmentRazi UniverityKermanshahIran

Personalised recommendations