Magnetic Properties of L10 (FePt)100-x Ag x Nanoparticles Synthesized by the Sol–Gel Method

  • Hossein Zeynali
  • Hossein Akbari
Original Paper


Alloy (FePt)100-x Ag x (x = 0, 6, 11, 17, 23, 27) nanoparticles have been successfully synthesized by the Sol–Gel method. The addition of Ag promoted the face-centered cubic to tetragonal phase transition, thereby reducing the temperature required for this transition comparable with pure FePt nanoparticles. Reduction of ordering temperature significantly lowers coalescence and drastically boosts the chemical ordering due to defects and lattice strain introduced by the Ag and the subsequent segregation of the Ag upon annealing. Coercivity increases with the content of Ag up to 17 %; above this percentage, the coercive field starts to decrease.


(FePt)100-xAgx nanoparticles Sintering Coercivity Phase transformation Sol–Gel method 



This work was supported by the Islamic Azad University Kashan Branch. The authors also thank the Islamic Azad University of Ardabil Branch.


  1. 1.
    Shpetnyi, I., Kovalenko, A.S., Klimenkov, M., Protsenko, I.Y., Chernov, S.V., Nepijko, S.A., Elmers, H.J., Schönhense, G.: J. Magn. Magn. Mater. 373, 231–235 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Shariatzadeh, R., Akbari, H., Zeynali, H., Arumugam, S., Kalaiselvan, G.: J. Supercond. Nov. Magn. 26, 3475–3485 (2013)CrossRefGoogle Scholar
  3. 3.
    Huimeng, W., Ou, C., Jiaqi, Z., Jared, L., Derek, L., Yasutaka, N., Charles, C.: J. Am. Chem. Soc. 133, 14327–14337 (2011)CrossRefGoogle Scholar
  4. 4.
    Yano, K., Nandwana, V., Poudyal, N., Rong, C.B., Liu, J.P.: J. Appl. Phys. 104, 13918 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Lu, L. Y., Wang, D., Xu, X. G., Zhan, Q., Jiang, Y.: J. Phys. Chem. C 113, 19867 (2009)CrossRefGoogle Scholar
  6. 6.
    Liu, X., Genga, B., Dua, Q., Maa, J., Liu, X.: Mater. Sci. Eng. A 448, 7 (2007)CrossRefGoogle Scholar
  7. 7.
    Zeynali, H., Akbari, H., Karimi Ghasabeh, R., Aarumugam, S., Chamanzadeh, Z., Kalaiselvan, G.: Nano J. 7, 1250043 (2012)CrossRefGoogle Scholar
  8. 8.
    Qing, L., Liheng, W., Gang, W., Dong, S., Haifeng, L., Sen, Z., Wenlei, Z., Anix, C., Huiyuan, Z., Adriana, M., Shouheng, S.: Nano Lett. 15, 2468–2473 (2015)CrossRefGoogle Scholar
  9. 9.
    Basly, B., Alnasser, T., Aissou, K., Fleury, G., Pecastaings, G., Hadziioannou, G., Duguet, E., Goglio, G., Mornet, S.: Langmuir 31, 6675–6680 (2015)CrossRefGoogle Scholar
  10. 10.
    Zeynali, H., Sebt, S.A., Arabi, H., Akbari, H., Hosseinpour Mashkani, S.M., Venkateswara Rao, K.: J. Inorg. Organomet. Polym. Mater. 22, 1314–1319 (2012)CrossRefGoogle Scholar
  11. 11.
    Kang, S., Harrell, J.W., Nikles, D.E.: Nano Lett. 2, 1033–1036 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, H., Shang, P., Zhang, J., Guo, M., Mu, Y., Li, Q., Wang, H.: Chem. Mater. 25, 2450–2454 (2013)CrossRefGoogle Scholar
  13. 13.
    Nishimura, K., Takahashi, K., Uchida, H., Inoue, M.: J. Magn. Magn. Mater. 272, 2189–2190 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Svedberg, E.B., Mallett, J.J., Sayan, S., Shapiro, A.J., Egelhoff, W.F., Moffat, T.: Appl. Phys. Lett. 85, 1353–1355 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Kang, S.S., Nikles, D.E., Harrell, J.W.: J. Appl. Phys. 93, 7178–7180 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Kang, S.S., Nikles, D.E., Harrell, J.W.: J. Appl. Phys. 93, 7178–7180 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, p 196. Wiley, New Jersey (2009)Google Scholar
  18. 18.
    Reiss, H.: J. Chem. Phys. 19, 482 (1951)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Kashan BranchIslamic Azad UniversityKashanIran
  2. 2.Department of Physics, Ardabil BranchIslamic Azad UniversityArdabilIran

Personalised recommendations