Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 8, pp 2109–2117 | Cite as

Structural and Static Magnetic Behavior of Antiferromagnetic Compounds La0.67Sr0.33−x Ca x Mn0.75Fe0.25 O 3 (x = 0.00 and 0.17)

  • Za. Mohamed
  • Mounira Abassi
  • E. Tka
  • J. Dhahri
  • E. K. Hlil
Original Paper


We investigated the structural and magnetic properties of polycrystalline La0.67Sr0.33−x Ca x Mn0.75Fe0.25 O 3 (x = 0.00 and 0.17) samples. Rietveld refinement of X-ray powder diffraction (XRD) patterns shows that the samples adopt a rhombohedral structure with the \(R\overline {3}c\) space group. The average particle size of each sample was estimated from the most intense peak (104) of XRD pattern using Debye–Scherrer’s formula. The average sizes are 73 and 82 nm. Static magnetic measurements, viz., hysteresis loops, field-cooled and zero field-cooled magnetization versus temperature curves of some samples carried out by BS1 and BS2 magnetometers in the temperature range of 400 to 5 K, clearly indicate the presence of a superparamagnetic (SPM) relaxation in the samples. Samples with x = 0.00 and x = 0.17 show an antiferromagnetic–paramagnetic (AFM–PM) transition at Neel temperature (T N) and a charge ordering transition, characterized by an extra peak (or shoulder) at T CO. The magnetocrystalline anisotropy, average particle size, and its distribution were calculated from the analysis of the static magnetic data. The results are in good agreement with those obtained from XRD observations.


Magnetic properties Superparamagnetic XRD Average particle size 



This work is supported by the Tunisian National Ministry of Higher Education and Scientific Research and the French Ministry of Higher Education and Research collaboration.


  1. 1.
    Jin, S., Tiefel, T.H., Mc Cormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564–573 (1955)ADSCrossRefGoogle Scholar
  3. 3.
    Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.-W.: Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3. Phys. Rev. B 55, 3015–3023 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Tokura, Y., Tomioka, Y.: Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Bao, W., Axe, J.D., Chen, C.H., Cheong, S-W.: Impact of charge ordering on magnetic correlations in perovskite (Bi, Ca) Mn O3. Phys. Rev. Lett. 78, 543–546 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Millange, F., de Brion, S., Chouteau, G.: Charge, orbital, and magnetic order in Nd0.5Ca0.5MnO3. Phys. Rev. B 62, 5619–5626 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Brink, J.V.D., Khaliullin, G., Khomskii, D.: Charge and orbital order in half-doped manganites. Phys. Rev. Lett. 83, 5118–5121 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Vogt, T., Cheetham, A.K., Mahendiran, R., Raychaudhuri, A.K., Mahesh, R., Rao, C.N.R.: Structural changes and related effects due to charge ordering in Nd0.5Ca0.5MnO3. Phys. Rev. B 54, 15303–15306 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Ding, J.F., Lebedev, O.I., Turner, S., Tian, Y.F., Hu, W.J., Seo, J.W., Panagopoulos, C., Prellier, W., Van Tendeloo, G., Wu, T.: Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders. Phys. Rev. B 87, 054428 1–054428 7 (2013)ADSGoogle Scholar
  10. 10.
    Karmakar, S., Chaudhuri, B.K., Chan, C.L., Yang, H.D.: Origin of low temperature memory and aging effects in spin glass like La0.7Ca0.3MnO3 nanomanganite. J. Appl. Phys. 108, 113916 1–113916 8 (2010)CrossRefGoogle Scholar
  11. 11.
    Lynn, J.W., Erwin, R.W., Borchers, J.A., Huang, Q., Santoro, A., Peng, J.L., Li, Z.Y.: Unconventional ferromagnetic transition in La1−xCaxMnO3. Phys. Rev. Lett. 76, 4046–4049 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Fäth, M., Freisem, S., Menovsky, A.A., Tomioka, Y., Aarts, J., Mydosh, J.A.: Spatially inhomogeneous metal-insulator transition in doped manganites. Science 285, 1540–1542 (1999)CrossRefGoogle Scholar
  13. 13.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  14. 14.
    Zemni, S., Gasmi, A., Boudard, M., Oumezzine, M.: Effect of nominal strontium deficiency on the structure and the magnetic properties of La0.6Sr0.4−δMnO3 manganese perovskites. J. Mat. Sci. Eng. B144, 117–122 (2007)CrossRefGoogle Scholar
  15. 15.
    Goldschmidt, V.M.: Geochemistry, p 730. Oxford University Press (1958)Google Scholar
  16. 16.
    Li, Z.Q., Jiang, E.Y., Ren, S.W., Hou, D.L., Wu, P., Bai, H.L.: Magneto-transport properties and electronic structure of La0.85Na0.15MnO3. Phys. Stat. Sol. (a) 195, 429–433 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  18. 18.
    Mohamed, Z., Tka, E., Dhahri, J., Hlil, E.K.: Giant magnetic entropy change in manganese perovskite La0.67Sr0.16Ca0.17MnO3 near room temperature. J. Alloys Compd. 615, 290– 297 (2014)CrossRefGoogle Scholar
  19. 19.
    Prasad, K., Chandra, K.P., Bhagat, S., Choudhary, S.N., Kulkarni, A.R.: Structural and electrical properties of lead-free perovskite Ba(Al1/2Nb1/2)O3. J. Am. Ceram. Soc. 93, 190– 196 (2010)CrossRefGoogle Scholar
  20. 20.
    Bhagat, S., Prasad, K.: Structural and impedance spectroscopy analysis of Ba(Fe1/2Nb1/2)O3 ceramic. Phys. Stat. Sol. (a) 207, 1232–1239 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Vanitha, P.V., Santhosh, P.N., Singh, R.S., Rao, C.N.R., Attfield, J.P.: Effect of the cation size disorder on charge ordering in rare-earth manganates. Phys. Rev. B 59, 13539–13541 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Vanitha, P.V., Rao, C.N.R.: An investigation of the re-entrant ferromagnetic transition in rare earth manganates in the regime of competing charge-ordering and ferromagnetic interactions. J. Phys.: Condens. Matter. 13, 11707–11715 (2001)ADSGoogle Scholar
  23. 23.
    Chang, Y.L., Huang, Q., Ong, C.K.: Effect of Fe doping on the magnetotransport properties in Nd0.67Sr0.33MnO3 manganese oxides. J. Appl. Phys. 91, 789–793 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Ahn, K.H., Wu, X.W., Liu, K., Chien, C.L.: Effects of Fe doping in the colossal magnetoresistive La1−xCaxMnO3. J. Appl. Phys. 81, 5505–5507 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Blanco, J.J., Insausti, M., Gil de Muro, I., Lezama, L., Rojo, T.: Neutron diffraction and magnetic study of the Nd0.7Pb0.3Mn1−xFexO3 (0≤x≤0.1) perovskites. J. Solid State Chem. 179, 623–631 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Laiho, R., Lisunov, K.G., Lähderanta, E., Salminen, J., Zakhvalinskii, V.S.: Low-field magnetic properties as indication of disorder, frustration and cluster formation effects in La1−xCaxMn1−yFeyO3. J. Magn. Magn. Mater. 250, 267–274 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)ADSCrossRefGoogle Scholar
  28. 28.
    Radaelli, P.G., Iannone, G., Marezio, M., Hwang, H.Y., Cheong, S.W., Jorgensen, J.D., Argyriou, D.N.: Structural effects on the magnetic and transport properties of perovskite \(\mathrm {A}_{\mathrm {1-x}}\mathrm {A}^{\prime }_{\mathrm {x}}\text {MnO}_{3}\) (x = 0.25, 0.30). Phys. Rev. B 56, 8265–8276 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Issaoui, F., Tlili, M.T., Bejar, M., Dhahri, E., Hlil, E.K.: Structural and magnetic studies of Ca2−xSmx MnO compounds (x = 0–0.4). J. Supercond. Novel Magn. 25, 1169–1175 (2012)CrossRefGoogle Scholar
  30. 30.
    Chalasani, R., Vasudevan, S.: Form, content, and magnetism in iron oxide nanocrystals. J. Phys. Chem. C 115, 18088–18093 (2011)CrossRefGoogle Scholar
  31. 31.
    Ningthoujam, R.S., Gajbhiye, N.S.: Magnetization studies on ε- Fe2.4Co0.6N nanoparticles. Mater. Res. Bull. 45, 499–504 (2010)CrossRefGoogle Scholar
  32. 32.
    Sarkar, T., Mukhopadhyay, P.K., Raychaudhuri, A.K., Banerjee, S.: Structural, magnetic, and transport properties of nanoparticles of the manganite Pr0.5Ca0.5MnO3. J. Appl. Phys. 101, 124307 1–124307 7 (2007)Google Scholar
  33. 33.
    Modak, S., Karan, S., Roy, S.K., Chakrabarti, P.K.: Static and dynamic magnetic behavior of nanocrystalline and nanocomposites of (Mn0.6Zn0.4Fe2O4)(1−z)(SiO2)z (z = 0.0, 0.10, 0.15, 0.25). J. Appl. Phys. 108, 093912 1–093912 9 (2010)CrossRefGoogle Scholar
  34. 34.
    Respaud, M., Broto, J.M., Rakoto, H., Fert, A.R., Thomas, L., Barbara, B., Verelst, M., Snoeck, E., Lecante, P., Mosset, A., Osuna, J., Ely, T.O., Amiens, C., Chaudret, B.: Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B 57, 2925–2935 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Wohlfarth, E.P.: The temperature dependence of the magnetic susceptibility of spin glasses. Phys. Lett. A 70, 489–491 (1979)ADSCrossRefGoogle Scholar
  36. 36.
    Vaishnava, P.P., Senaratne, U., Buc, E.C., Naik, R., Naik, V.M., Tsoi, G.M., Wenger, L.E.: Magnetic properties of γ- Fe2O3 nanoparticles incorporated in a polystyrene resin matrix. Phys. Rev. B 76, 024413 1–024413 10 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Chikazumi, S.: Physics of Magnetism, p 140. Krieger, Malabar FL (1964)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Za. Mohamed
    • 1
  • Mounira Abassi
    • 1
  • E. Tka
    • 1
  • J. Dhahri
    • 1
  • E. K. Hlil
    • 2
  1. 1.Laboratoire de Physique de la matière condensée et des nanosciences, Faculté des SciencesUniversité de MonastirMonastirTunisia
  2. 2.Institut NéelCNRS et Université Joseph FourrierGrenoble Cedex 9France

Personalised recommendations