Effects of the Sintering Conditions on the Structural Phase Evolution and T C of Bi1.6Pb0.4Sr2Ca2Cu3O7 Prepared Using the Citrate sol–gel Method

  • Nono Darsono
  • Dang-Hyok Yoon
  • Kati Raju
Original Paper


The effects of the sintering temperature and time on the phase evolution, microstructure and superconducting properties in a typical Pb-doped Bi-Sr-Ca-Cu-O (BSCCO) system, Bi1.6Pb0.4Sr2Ca2Cu3O7, were examined systematically by X-ray diffraction (XRD), thermo gravimetric-differential thermal analysis, scanning electron microscopy, and four-point probe resistivity measurements. The samples were prepared by the citrate based sol–gel method using their corresponding nitrates as the starting materials. The samples were sintered at different temperatures, ranging from 820 to 860 °C with different dwell-times (24–120 h). The results showed that the sintering temperature had a significant effect on the structure and superconducting transition temperature (TC). XRD showed that when the samples were heat treated at 550 °C, the BSCCO 2201 phase appeared, whereas peaks corresponding to the BSCCO 2112 phase were dominant at 800 °C. At 840 °C, only the peaks corresponding to the BSCCO 2212 and 2223 phases were detected with no impurities. A strong correlation was observed between the structural data andTC; the samples sintered at 840 °C for 120 h exhibited the maximum \(T_{\mathrm {C}}^{\text {onset}}\)(115.7 K).


Superconductor Bi-Pb-Sr-Ca-Cu oxide Sintering XRD 



This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. NRF-2014K2A4A1035029) the Research Center for Metallurgy and Materials—Indonesian Institute of Sciences and the Indonesian Research Fund for Competitive Research for Advanced Materials and Manufacturing Engineering 2015.


  1. 1.
    Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: Jpn. J. Appl. Phys. 27, L209–210 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Chu, C.W., Deng, L.Z., Lv, B.: Phys. C Supercond. Its Appl. 514, 290–313 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Chen, M., Donzel, L., Lakner, M., Paul, W.: J. Eur. Ceram. Soc. 24, 1815–1822 (2004)CrossRefGoogle Scholar
  4. 4.
    Tsukamoto, O.: Phys. C Supercond. Its Appl. 468, 1101–1111 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Ryu, K., Ma, Y.H., Li, Z.Y., Hwang, S.D., Song, H.J.: Phys. C Supercond. 470, 1606–1610 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Masuda, T., Yumura, H., Watanabe, M.: Phys. C Supercond. 468, 2014–2017 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Statt, B.W., Wang, Z., Lee, M.J.G., Yakhmi, J.V., De Camargo, P.C., Major, J.F., et al.: Phys. C. 156, 251–255 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    Takano, M., Takada, J., Oda, K.: Jpn. J. Appl. Phys. 27, L1041–L1043 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Pandey, D., Singh, A.K., Mahesh, R., Tiwari, V.S., Kak, S.K.: Phys. C Supercond. 173, 476–486 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Sequeira, A., Rajagopal, H., Sastry, P.V.P.S.S., Yakhmi, J.V., Iyer, R.M.: Phys. C Supercond. 173, 267–273 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    Tampieri, A., Calestani, G., Celotti, G., Masini, R., Lesca, S.: Phys. C Supercond. 306, 21–33 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Ghazanfari, N., Kılıç, A., Gencer, A., Özkan, H.: Solid State Commun. 144, 210–214 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Halim, S.A., Khawaldeh, S.A., Mohamed, S.B., Azhan, H.: Mater. Chem. Phys. 61, 251–259 (1999)CrossRefGoogle Scholar
  14. 14.
    Tampieri, A., Celotti, G., Guicciardi, S., Melandri, C.: Mater. Chem. Phys. 42, 188–194 (1995)CrossRefGoogle Scholar
  15. 15.
    Hermiz, G.Y., Aljurani, B.A., Thabit, H.A.: J. Supercond. Nov. Magn. 25, 1629–1634 (2012)CrossRefGoogle Scholar
  16. 16.
    Kim, W.-J., Kwon, S.-C., Lee, H. J., Lee, H.-G., Hong, G.-W., Kuk, I.-H.: Phys. C Supercond. 294, 147–155 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Aloysius, R.P., Guruswamy, P., Syamaprasad, U.: Supercond. Sci. Technol. 18, L23–L28 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Darsono, N., Imaduddin, A., Raju, K., Yoon, D.-H.: J. Supercond. Nov. Magn. 28, 2259–2266 (2015)CrossRefGoogle Scholar
  19. 19.
    Hamadneh, I., Agil, A., Yahya, A.K., Halim, S.A.: Phys. C Supercond. Its Appl. 463–465, 207–210 (2007)CrossRefGoogle Scholar
  20. 20.
    Hamadneh, I., Halim, S.A., Lee, C.K.: J. Mater. Sci. 41, 5526–5530 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Tampieri, A., Celotti, G., Lesca, S., Bezzi, G., La Torretta, T.M.G., Magnani, G.: J. Eur. Ceram. Soc. 20, 119–126 (2000)CrossRefGoogle Scholar
  22. 22.
    Sun, Y.-K., Lee, I.-H., Korean, W.Y.: J. Chem. Eng. 14, 2005–2007 (1997)Google Scholar
  23. 23.
    Ma, K., Pierre, A.C.: J. Mater. Res. 7, 1328–1335 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    Duarte, E.A., Quintero, P.A., Meisel, M.W., Nino, J.C.: Phys. C Supercond. 495, 109–113 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Zalga, A., Reklaitis, J., Norkus, E., Beganskiene, A., Kareiva, A.: Chem. Phys. 327, 220–228 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Sarun, P.M., Aloysius, R.P., Syamaprasad, U.: Mater. Lett. 60, 3797–3802 (2006)CrossRefGoogle Scholar
  27. 27.
    Aoki, A.: Jpn. J. Appl. Phys. 29, L270–272 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    Kargar, M., Alikhanzadeh-Arani, S., Salavati-Niasari, M., Bagheri, S.: Phys. C Supercond. Its Appl. 511, 20–25 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Toro, R.D., Hernández, P., Díaz, Y., Brito, J.L.: Mater. Lett. 107, 231–234 (2013)CrossRefGoogle Scholar
  30. 30.
    Raju, K., Yoon, D.H.: J. Supercond. Nov. Magn. 27, 1285–1292 (2013)CrossRefGoogle Scholar
  31. 31.
    Ozturk, O., Terzioglu, C., Belenli, I.: J. Supercond. Nov. Magn. 24, 381–390 (2011)CrossRefGoogle Scholar
  32. 32.
    Rubešová, K., Jakeš, V., Hlásek, T., Vašek, P., Matějka, P.: J. Phys. Chem. Solids 73, 448–453 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Marconi, D., Lung, C., Pop, A.V.: J. Alloys Compd. 579, 355–359 (2013)CrossRefGoogle Scholar
  34. 34.
    Staneva, A.D., Blagoev, B.S., Shivachev, B.L., Zaleski, A.J., Mikli, V., Mateeva, J.B., et al.: J. Alloys Compd. 582, 223–228 (2014)CrossRefGoogle Scholar
  35. 35.
    Sotelo, A., Rasekh, S., Constantinescu, G., Amaveda, H., Torres, M.A., Madre, M.A., Diez, J.C.: J. Eur. Ceram. Soc. 34, 2977–2982 (2014)CrossRefGoogle Scholar
  36. 36.
    Wu, C., Zhao, G., Fang, P.: Mater. Chem. Phys. 167, 160–164 (2015)CrossRefGoogle Scholar
  37. 37.
    Safran, S., Klçarslan, E., Ozturk, H., Alp, M., Akdogan, M., Asikuzun, E., et al.: Phys. B Condens. Matter. 472, 34–40 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Li, D., Zhang, H., Gao, X., Yang, S., Chen, Q.: Ceram. Int. 42, 1728–1732 (2016)CrossRefGoogle Scholar
  39. 39.
    Paz-Pujalt, G.R.: Phys. C Supercond. 166, 177–184 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    Pissas, M., Niarchos, D., Christides, C., Anagnostou, M.: Supercond. Sci. Technol. 3, 128–133 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    Pandey, D., Mahesh, R., Singh, A.K., Tiwari, V.S., Kak, S.K.: Solid State Commun. 76, 655–658 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    Pandey, D., Mahesh, R., Tiwari, V.S., Singh, A.K., Kak, S.K.: Solid State Commun. 75, 499–502 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    Ben Azzouz, F., Mchirgui, A., Yangui, B., Boulesteix, C., Ben Salem, M.: Phys. C. 356, 83–96 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    Khalil, S.M.: J. Phys. Chem. Solids 62, 457–466 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    Govea-Alcaide, E., Jardim, R.F., Muné, P.: Phys. C Supercond. 423, 152–162 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYeungnam UniversityGyeongsanSouth Korea
  2. 2.Research Center for Metallurgy of Materials—Indonesian Institute of SciencesTangerang SelatanIndonesia

Personalised recommendations