Structural and Magnetic Consequences of Mn0.6Zn0.4Fe2−x Gd x O4 Ferrite

  • Shahab Torkian
  • Ali Ghasemi
  • Reza Shoja Razavi
Original Paper


Gadolinium-substituted spinel ferrite nanopowders Mn0.6Zn0.4Fe2−x Gd x O 4 (x = 0, 0.1, 0.2, 0.3, 0.4) were prepared by sol-gel auto-combustion method and post subsequent heat treatment. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared (FTIR), and vibrating sample magnetometer (VSM) methods were used in order to investigate the effect of Gd 3+ cation substitution on structural and magnetic properties of Mn–Zn ferrite. The results of XRD measurements and FTIR spectra showed the formation of single spinel ferrite for x ≤ 0.2 that is associated with some secondary phases at higher amounts of Gd 3+ doping. The lattice parameter was found to increase with increasing Gd content. The average particle size of substituted Mn–Zn ferrite became smaller by addition of gadolinium. The room temperature saturation magnetization values increased up to 56.4 emu/g for x = 0.1, and then decreased upon further Gd substitution. Similar behavior was observed in the coercivity changes. The observed magnetic properties were explained on the basis of net magnetic moment changes and structural characterization upon Gd substitution in the compound.


Mn–Zn ferrite Sol-gel auto-combustion method Magnetic properties 


  1. 1.
    Calderón-Ortiz, E., Perales-Perez, O., Voyles, P., Gutierrez, G., Tomar, M.: MnxZn1−xFe2−yRyO4 (R =Gd, Eu) ferrite nanocrystals for magnetocaloric applications. Microelectron. J. 40(4), 677–680 (2009)CrossRefGoogle Scholar
  2. 2.
    Shokrollahi, H., Janghorban, K.: Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites. Mater. Sci. Eng. B 141(3), 91–107 (2007)CrossRefGoogle Scholar
  3. 3.
    Hu, P., Pan, D-A, Wang, X-F, Tian, J-J, Wang, J., Zhang, S-G, Volinsky, A.A.: Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition. J. Magn. Magn. Mater. 323 (5), 569–573 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Waqas, H., Qureshi, A.: Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. J. Therm. Anal. Calorim. 98(2), 355–360 (2009)CrossRefGoogle Scholar
  5. 5.
    Ji, H., Lan, Z., Yu, Z., Zhi, Y., Liu, Z: Effect of Ti-Substitution on Temperature Dependence and Magnetic Disaccommodation of MnZn Ferrites. IEEE (2009)Google Scholar
  6. 6.
    Calderon-Ortiz, E., Perales-Perez, O., Voyles, P., Gutierrez, G., Tomar, M.: MnxZn1−xFe2−yRyO4 (R =Gd, Eu) ferrite nanocrystals for potential magnetocaloric applications (2007)Google Scholar
  7. 7.
    Brusentsova, T.N., Brusentsov, N.A., Kuznetsov, V.D., Nikiforov, V.N.: Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-T C agent for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 293(1), 298–302 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Šepelák, V., Heitjans, P., Becker, K.: Nanoscale spinel ferrites prepared by mechanochemical route: thermal stability and size dependent magnetic properties. J. Therm. Anal. Calorim. 90(1), 93–97 (2007)CrossRefGoogle Scholar
  9. 9.
    Coey, J.M.D.: Magnetism and Magnetic Materials. Cambridge University Press (2010)Google Scholar
  10. 10.
    Singh, A.K., Goel, T., Mendiratta, R., Thakur, O., Prakash, C.: Magnetic properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 92(7), 3872–3876 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Upadhyay, R.V., Parekh, K., Belova, L., Rao, K.: Low-field DC-magnetization study of Ho 3+-doped Mn–Zn ferrite ferrofluid. J. Magn. Magn. Mater. 311(1), 106–110 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Rezlescu, E., Rezlescu, N., Pasnicu, C., Craus, M., Popa, D.: The influence of additives on the properties of Ni-Zn ferrite used in magnetic heads. J. Magn. Magn. Mater. 117(3), 448–454 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Upadhyay, R.V., Mehta, R.V., Parekh, K., Srinivas, D., Pant, R.P.: Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient. J. Magn. Magn. Mater. 201(1-3), 129–132 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Zhao, L., Cui, Y., Yang, H., Yu, L., Jin, W., Feng, S.: The magnetic properties of Ni0.7Mn0.3GdxFe2−xO4 ferrite. Mater. Lett. 60(1), 104–108 (2006)CrossRefGoogle Scholar
  15. 15.
    Arora, M., Kumar, A., Pant, R.P.: Gd substituted of Mn0.5Zn0.5GdxFe2−xO4 (x = 0, 0.1, 0.2, 0.3, 0.4) ferrites for ferrofluids application. Physics Procedia 9, 24–27 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Meng, Y., Liu, Z., Dai, H., Yu, H., Zeng, D., Shukla, S., Ramanujan, R.V.: Structure and magnetic properties of Mn(Zn)Fe2−xRExO4 ferrite nano-powders synthesized by co-precipitation and refluxing method. Powder Technol. 229, 270–275 (2012)CrossRefGoogle Scholar
  17. 17.
    Chick, L.A., Pederson, L., Maupin, G., Bates, J., Thomas, L., Exarhos, G.: Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10(1), 6–12 (1990)CrossRefGoogle Scholar
  18. 18.
    Shannon, Rt.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976)CrossRefGoogle Scholar
  19. 19.
    Yang, H., Wang, Z., Song, L., Zhao, M., Wang, J., Luo, H.: A study on the coercivity and the magnetic anisotropy of the lithium ferrite nanocrystallite. J. Phys. D Appl. Phys. 29(10), 2574 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Rezlescu, N., Rezlescu, E., Pasnicu, C., Craus, M.: Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. J. Phys.: Condens. Matter 6(29), 5707 (1994)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shahab Torkian
    • 1
  • Ali Ghasemi
    • 1
  • Reza Shoja Razavi
    • 1
  1. 1.Materials Engineering DepartmentMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations