Advertisement

Low Magnetic Field Magnetocaloric Effect in \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge 4

  • Mahmoud A. Hamad
Original Paper

Abstract

The magnetocaloric effect is investigated for \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 (0.25 ≤ x ≤ 2) system near a phase transition from a ferromagnetic to a paramagnetic state as a function of temperature with low external magnetic field change of 100 Oe. The sample with x = 1 has the smallest value of maximum magnetic entropy change and the specific heat change, and highest values of full-width at half-maximum and relative cooling power. The results indicate that the \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 system has a prospective application for magnetic refrigerant in an extended high temperature range. Consequently, \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 compounds are very attractive candidates for magnetic refrigeration applications, especially nitrogen liquefier.

Keywords

Magnetocaloric effect Magnetic entropy change 

References

  1. 1.
    Hamad, M.A.: J. Supercond. Nov. Magn 28, 2223–2227 (2015)CrossRefGoogle Scholar
  2. 2.
    Hamad, M.A.: J. Supercond. Nov. Magn. 27, 223-227 (2014)CrossRefGoogle Scholar
  3. 3.
    Hamad, M.A.: J. Supercond. Nov. Magn 27, 269–272 (2014)CrossRefGoogle Scholar
  4. 4.
    Hamad, M.A.: J. Therm. Anal. Calorim. 115, 523-526 (2014)CrossRefGoogle Scholar
  5. 5.
    Hamad, M.A.: Phase Transitions 87, 460–467 (2014)CrossRefGoogle Scholar
  6. 6.
    Hamad, M.A.: Magnetocaloric effect of perovskite Eu0.5Sr0.5CoO3. J. Supercond. Nov. Magn 27, 277–280 (2014)CrossRefGoogle Scholar
  7. 7.
    Hamad, M.A.: Magnetocaloric effect in La1xCdxMnO3. J. Supercond. Nov. Magn 26, 3459–3462 (2013)CrossRefGoogle Scholar
  8. 8.
    Hamad, M.A.: Magnetocaloric effect in (001)-oriented MnAs thin film. J. Supercond. Nov. Magn 27, 263–267 (2014)CrossRefGoogle Scholar
  9. 9.
    Hamad, M.A. Processing and Application of Ceramics 9, 11–15 (2015)CrossRefGoogle Scholar
  10. 10.
    Hamad, M. A.: Effects of addition of rare earth on Magnetocaloric Effect in Fe82Nb2 B 14, vol. 28 (2015)Google Scholar
  11. 11.
    Hamad, M.A.: J. Supercond. Nov. Magn 28, 2525–2528 (2015)CrossRefGoogle Scholar
  12. 12.
    Hamad, M.A.: Magnetocaloric effect in half-metallic double perovskite Sr0.4Ba1.6xSrxFeMoO6. Int. J. Thermophys 34, 21442151 (2013)Google Scholar
  13. 13.
    Hamad, M.A.: Simulation of magnetocaloric properties of antiperovskite structural Ga1XAlXCMn3. J. Supercond. Nov. Magn 27, 2569–2572 (2014)CrossRefGoogle Scholar
  14. 14.
    Hamad, M.A.: Lanthanum concentration effect of magnetocaloric properties in LaxMnO3 −δ. J. Supercond. Nov. Magn 28, 173–178 (2015)CrossRefGoogle Scholar
  15. 15.
    Hamad, M.A.: J. Supercond. Nov. Magn 27, 1777–1780 (2014)CrossRefGoogle Scholar
  16. 16.
    Hamad, M.A.: Calculations on nanocrystalline CoFe2O4 prepared by polymeric precursor method. J. Supercond. Nov. Magn 26, 669–673 (2013)CrossRefGoogle Scholar
  17. 17.
    Hamad, M.A.: Prediction of energy loss of Ni0.58Zn0.42Fe2O4 nanocrystalline and Fe3O4 nanowire arrays. Jpn. J. Appl. Phys 085004, 49 (2010)Google Scholar
  18. 18.
    Pecharsky, V.K., Holm, A.P., Gschneidner Jr., K.A., Rink, R.: Phys. Rev. Lett 91, 197204 (2003)CrossRefADSGoogle Scholar
  19. 19.
    Mozharivskyj, Y., Choe, W., Pecharsky, A.O., Miller, G.J.: J. Am. Chem. Soc. 125, 15183–90 (2003)CrossRefGoogle Scholar
  20. 20.
    Cheung, Y.Y.J., Svitlyk, V., Mozharivskyj, Y.: J. Magn. Magn. Mater. 331, 237–244 (2013)CrossRefADSGoogle Scholar
  21. 21.
    Misra, S., Mozharivskyj, Y., Tsokol, A.O., Schlagel, D.L., Lograsso, T.A., Miller, G.J.: J. Solid State Chem. 182, 3031–3040 (2009)CrossRefADSGoogle Scholar
  22. 22.
    Chernyshov, A.S., Mudryk, Y.S., Pecharsky, V.K., Gschneidner Jr., K.A.: J. Appl. Phys. 99, 08Q102 (2006)CrossRefGoogle Scholar
  23. 23.
    Magen, C., Arnold, Z., Morellon, L., Skorokhod, Y., Algarabel, P.A., Ibarra, M.R., Kamarad, J.: Phys. Rev. Lett. 91, 207202 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Yao, J., Wang, P., Mozharivskyj, Y.: Chem. Mater. 24, 552 −556 (2012)Google Scholar
  25. 25.
    Hamad, M.A.: Prediction of Thermomagnetic Properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transitions 85, 106 (2012)CrossRefGoogle Scholar
  26. 26.
    Yao, J., Wang, P., Mozharivskyj, Y.: J. Alloys Compd. 534, 74–80 (2012)CrossRefGoogle Scholar
  27. 27.
    Hamad, M.A.: J. Adv. Ceram 4, 206–210 (2015)CrossRefGoogle Scholar
  28. 28.
    Hamad, M.A.: J. Adv. Ceram 2, 308–312 (2013)CrossRefGoogle Scholar
  29. 29.
    Hamad, M.A.: J. Supercond. Nov. Magn 28, 3329–3333 (2015)CrossRefGoogle Scholar
  30. 30.
    Hamad, M.A.: J. Supercond. Nov. Magn 28, 3365–3369 (2015)CrossRefGoogle Scholar
  31. 31.
    Hamad, M.A.: Philos. Mag. Lett 93, 346–355 (2013)CrossRefADSGoogle Scholar
  32. 32.
    Hamad, M.A.: J. Adv. Dielect 1450026, 4 (2014)Google Scholar
  33. 33.
    Hamad, M.A.: J. Adv. Dielect 1350008, 3 (2013)Google Scholar
  34. 34.
    Hamad, M.A.: Int. J. Thermophys 34, 1158–1165 (2013)CrossRefADSGoogle Scholar
  35. 35.
    Hamad, M.A.: J. Therm. Anal. Calorim 113, 609–613 (2013)CrossRefGoogle Scholar
  36. 36.
    Hamad, M.A.: J. Supercond. Nov. Magn 26, 2981–2984 (2013)CrossRefGoogle Scholar
  37. 37.
    Hamad, M.A.: Phase Transit 86, 307–314 (2013)CrossRefGoogle Scholar
  38. 38.
    Hamad, M.A.: Int. J. Thermophys 36, 2748–2754 (2015)CrossRefADSGoogle Scholar
  39. 39.
    Hamad, M.A.: Appl. Phys. Lett 142908, 102 (2013)Google Scholar
  40. 40.
    Hamad, M.A.: AIP Adv 032115, 3 (2013)Google Scholar
  41. 41.
    Hamad, M.A.: J. Therm. Anal. Calorim 111, 1251–1254 (2013)CrossRefGoogle Scholar
  42. 42.
    Hamad, M.A.: Phase Transit 85, 159–168 (2012)CrossRefGoogle Scholar
  43. 43.
    Hamad, M.A.: J. Adv. Ceram 2, 213–217 (2013)CrossRefGoogle Scholar
  44. 44.
    Hamad, M.A.: J. Adv. Dielectr 1350029, 3 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations