Correlation Between Structural Features and Microwave Analysis of Substituted Sr-Co2Y Ceramic Nanoparticles

  • Alireza Nikzad
  • Ali Ghasemi
  • Masoud Kavosh Tehrani
  • Gholam Reza Gordani
Original Paper


In this study, Y-type strontium hexagonal ferrite (Sr2Co2Fe12o22) and Sr2Co2Fe12−y/2Al y/2o22 (where y = 0.0–3.0 in a step of 0.5) nanoparticles were prepared by a chemical co-precipitation method. Synthesis time and temperature were varied from 1 to 3 h and 800 to 1000 C, respectively. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), vibration sample magnetometer (VSM), and vector network analyzer (VNA) were employed to study the structural, magnetic, and microwave absorption properties of nanoparticles. According to the results, the optimum condition for synthesize of Y-type Sr-hexaferrite was 900 C at 1 h. The FE-SEM results showed that the particle size increases with increasing in the sintering temperature and also the morphology of particles is slowly twisted from a plate like hexagon to a complex polyhedron shapes. The coercivity has declined from 1327 to 153 Oe and saturation magnetization initially declined and then increased after the formation of Y-type Sr-hexaferrite phase. FE-SEM results for substitution samples showed that the particle size increased with an increase in Al 3+ ion. The maximum reflection loss of substituted Sr-hexaferrites reached −30.7 dB at a frequency of 11.3 GHz and a bandwidth of 3.3 GHz (RL >−10 dB). The obtained results shown that the suggested composites can be introduced as electromagnetic wave absorbers at gigahertz frequency range.


Nanoparticles Ferrite Microwave absorption 


  1. 1.
    Robert, C.: Pullar Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  2. 2.
    Su, Z., Li, Q., Wang, X., Hu, B., Feng, Z., Chen, Y., Harris, V.G.: Tunable permittivity and permeability of low loss Z + Y-type ferrite composites for ultra-high frequency applications. J. Appl. Phys. 117, 17E506 (2015)CrossRefGoogle Scholar
  3. 3.
    Xu, W., Yang, J., Bai, W., Zhang, Y., Tang, K., Duan, C., Tang, X., Chu, J.: Effects of aluminum substitution on the crystal structure and magnetic properties in Zn2Y-type hexaferrites. J. Appl. Phys. 117, 17D909 (2015)CrossRefGoogle Scholar
  4. 4.
    Smit, J., Wijn, H.P.J., Luton, G.E.: Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications. Wiley, New York (1959)Google Scholar
  5. 5.
    Bai, Y., Zhang, W., Qiao, L., Zhou, J.: Low-fired Y-type hexagonal ferrite for hyper frequency applications. J. Adv. Ceram. 1(2), 100–109 (2012)CrossRefGoogle Scholar
  6. 6.
    Ali, I., Islam, M.U., Ashiq, M.N., Iqbal, M.A., Khan, H.M., Karamat, N.: Effect of Tb–Mn substitution on DC and AC conductivity of Y-type hexagonal ferrite. J. Alloys Compd. 579, 576–582 (2013)CrossRefGoogle Scholar
  7. 7.
    Won, M.H., Kim, C.S.: Magnetic properties of Ni substituted Y-type barium ferrite. J. Appl. Phys. 115, 17A509 (2014)CrossRefGoogle Scholar
  8. 8.
    Mirzaee, O., Mohamady, R., Ghasemi, A., Alizad Farzin, Y.: Study of the magnetic and structural properties of Al Cr codoped Y-type hexaferrite prepared via sol gel auto-combustion method. Int. J. Mod. Phys. B 29(14), 1550090 (8 pages) (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Kwan, H.J.: The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers. J. Appl. Phys. 75, 6109–6111 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Elata, A.M.A., Ahmed, M.A., Elhiti, M.A.: Physical properties of Ba2Ni2−xFe12o22 hexaferrites. J. Mater. Sci. Lett. 18, 563–567 (1999)CrossRefGoogle Scholar
  11. 11.
    Dorsey, P., Sun, K., Vittoria, C., Wittenauer, M.A., Friedlander, F.J., Schindler, A.: Ferrimagnetic resonance linewidth in single-crystal Mn-doped Ba2Zn2Fe12o22. J. Appl. Phys. 67, 5524–5526 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Ghasemi, A.: Compositional dependence of magnetization reversal mechanism, magnetic interaction and Curie temperature of Co1−xSrxFe2o4 spinel thin film. J. Alloys Compd. 645, 467–477 (2015)CrossRefGoogle Scholar
  13. 13.
    Sharma, P., Rocha, R.A., Medeiros, S.N.d., Paesano, A.: Structural and magnetic studies on barium hexaferrites prepared by mechanical alloying and conventional route. J. Alloys Compd. 443, 37–42 (2007)CrossRefGoogle Scholar
  14. 14.
    Ding, J., Yang, H., Miao, W.F., McCormick, P.G., Street, R.: High coercivity Ba hexaferrite prepared by mechanical alloying. J. Alloys Compd. 221, 70–73 (1995)CrossRefGoogle Scholar
  15. 15.
    VietNg, T.T., Duong, N.P., Loan, T.T., Hien, T.D.: Key step in the synthesis of ultrafine strontium ferrite powders (SrFe12o19) by sol?gel method. J. Alloys Compd. 610, 630–634 (2014)CrossRefGoogle Scholar
  16. 16.
    Ashiq, M.N., Ehsan, M.F., Iqbal, M.J.: Role of Zr–Co substitution at iron site on structural, magnetic and electrical properties of Sr-hexaferrites nanomaterials synthesized by the sol–gel combustion method. J. Magn. Magn. Mater. 332, 93–97 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Junliang, L., Yanwei, Z., Cuijing, G., Weib, Z., Xiaowei, Y.: One-step synthesis of barium hexaferrite nano-powders via microwave-assisted sol–gel auto-combustion. J. Eur. Ceram. Soc. 30, 993–997 (2010)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Drew, M.G.B., Wang, J., Zhang, M., Li, Y.: Efficiency and purity control in the preparation of pure and/or aluminum-doped barium ferrites by hydrothermal methods using ferrous ions as reactants. J. Magn. Magn. Mater. 322, 366–374 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Xia, A., Zuo, C., Chen, L., Jin, C., Lv, Y.: Hexagonal SrFe12o19 ferrites: hydrothermal synthesis and their sintering properties. J. Magn. Magn. Mater. 332, 186–191 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Ghasemi, A., Ghasemi, E., Paimozd, E.: Influence of copper cations on the magnetic properties of NiCuZn ferrite nanoparticles. J. Magn. Magn. Mater. 323, 1541–1545 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Li, L., Chen, K., Li, H., Tong, G., Qian, H., Ha, B.: Attractive microwave-absorbing properties of M-BaFe12o19 ferrite. J. Alloys Compd. 557, 11–17 (2013)CrossRefGoogle Scholar
  22. 22.
    Gordani, G.R., Ghasemi, A., Saidi, A.: Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method. J. Ceram. Int. 40, 4945–4952 (2014)CrossRefGoogle Scholar
  23. 23.
    Ali, I., Islam, M.U., sadiq, I., Karamat, N., Iftikhar, A., khan, M.A., Shah, A., Athar, M., Shakir, I., Ashiq, M.N.: Synthesis and magnetic properties of (Eu–Ni) substituted Y-type hexaferrite by surfactant assisted co-precipitation method. J. Magn. Magn. Mater. 385, 386–393 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, C., Shi, J., Yang, X., De, L., Wang, X.: Effects of calcination temperature and solution pH value on the structural and magnetic properties of Ba2Co2Fe12o22 ferrite via EDTA-complexing process. J. Mater. Chem. Phys. 123, 551–556 (2010)CrossRefGoogle Scholar
  25. 25.
    Xu, W., Wang, Z., Yang, J., Bai, W., Zhang, Y., Tang, X.: Magnetic and dielectric properties in multiferroic Y-type hexaferrite. J. Mol. Cryst. Liq. Cryst. 603, 235–239 (2014)CrossRefGoogle Scholar
  26. 26.
    Kim, C.M., Rhee, C.H., Kim, C.S.: Site preference for Fe in Zn-doped Y-type barium hexaferrite. IEEE Trans. Magn. 48, 3414–3417 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Bai, Y., Xu, F., Qia, L., Zhou, J.: Effect of Mn doping on physical properties of Y-type hexagonal ferrite. J. Alloys Compd. 473, 505–508 (2009)CrossRefGoogle Scholar
  28. 28.
    Mousavinia, M., Ghasemi, A., Paimozd, E.: Structural, magnetic, and microwave properties of SrFe12−x(Ni0.5Co0.5Sn)x/2o19 particles synthesized by sol?gel combustion method. J. Electron. Mater. 42, 2784–2792 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Nikzad, A., Ghasemi, A., Tehrani, M.K., Gordani, G.R.: Y-type strontium hexaferrite: the role of Al substitution, structural, and magnetic consequence. J. Supercond. Nov. Magn., 1–8 (2015)Google Scholar
  30. 30.
    Pramanik, N.C., Fujii, T., Nakanishi, M., Takada, J., Seok, S.: The effect of heat treatment temperature on the microstructure and magnetic properties of Ba2Co2Fe12o22 (Co2Y) prepared by sol–gel method, vol. 60 (2006)Google Scholar
  31. 31.
    Mousavinia, M., Ghasemi, A., Paimozd, E.: Structural, magnetic, and reflection loss characteristics of Ni/Co/Sn-substituted strontium ferrite/functionalized MWCNT nanocomposites. J. Electron. Mater. 43, 2573–2583 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Kwon, H.J., Shin, J.Y., Oh, J.H.: The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers. J. Appl. Phys. 75, 6109 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alireza Nikzad
    • 1
  • Ali Ghasemi
    • 2
  • Masoud Kavosh Tehrani
    • 1
  • Gholam Reza Gordani
    • 2
  1. 1.Department of PhysicsMalek Ashtar University of TechnologyIsfahanIran
  2. 2.Department of Materials EngineeringMalek Ashtar University of TechnologyIsfahanIran

Personalised recommendations