Inhomogeneous Temperature Fields, Current Distribution, Stability and Heat Transfer in Superconductor 1G Multi-filaments

  • Harald Reiss
Original Paper


This paper is focused on simulations of how a superconductor reacts to extreme, suddenly changing operation conditions imposed by strong over-currents. An attempt is made to shed light on the physics of current transport behind, as far as this can be achieved with numerical simulations. For this purpose, temperature and current distribution in multi-filamentary high-temperature superconductors is investigated in a finite element analysis with high spatial and time resolution. An extra subsection is devoted to the involved heat transfer problem. As a result, resistive (Ohmic and flux flow) and zero loss states would co-exist in parallel if over-current cannot be compensated, for example, by switching it to a shunt. Anisotropic thermal diffusivity of high-temperature superconductors, in particular of BSCCO, would obstruct thermalisation of losses, and compensating of field and current in-homogeneities would become impossible within acceptable periods of time.


Superconductor Finite element analysis Local conductor temperature Random variables Current distribution Conductor stability Heat transfer Current percolation 


  1. 1.
    Blatt, J.M.: Theory of Superconductivity. Academic Press, New York and London (1964)MATHGoogle Scholar
  2. 2.
    de Gennes, P.G.: Superconductivity of Metals and Alloys. W. A. Benjamin, Inc., New York and Amsterdam (1966)MATHGoogle Scholar
  3. 3.
    Tinkham, M.: Introduction to Superconductivity. Robert E. Krieger Publ. Co., Malabar (1980). repr. Ed.Google Scholar
  4. 4.
    Wilson, M. N.: Superconducting Magnets. In: Scurlock, R. (ed.) Monographs on Cryogenics. Oxford University Press, New York, reprinted paperback (1989)Google Scholar
  5. 5.
    Dresner, L.: Stability of Superconductors. In: Wolf, St (ed.) Selected Topics in Superconductivity. Plenum Press, New York (1995)Google Scholar
  6. 6.
    Kalsi, Sw. S.: Applications of High Temperature Superconductors to Electric Power Equipment, pp 173–217, Hoboken (2011)Google Scholar
  7. 7.
    Reiss, H.: Superconductor stability against quench and its correlation with current propagation and limiting. J. Superconduct. Novel Magn. 28, 2979–2999 (2015)CrossRefGoogle Scholar
  8. 8.
    Rettelbach, T., Schmitz, G. J.: 3D simulation of temperature, electric field and current density evolution in superconducting components. Supercond. Sci. Technol. 16, 645–653 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Marzahn, E.: Supraleitende Kabelsysteme, Lecture (in German) given at the 2nd Braunschweiger Supraleiter Seminar, Technical University of Braunschweig (Germany)
  10. 10.
    Shimizu, H., Yokomizu, Y., Goto, M., Matsumuara, T., Murayama, N.: A study on required volume of superconducting element for flux flow resistance type fault current limiter. IEEE Transacts. Appl. Supercond. 13, 2052–2055 (2003)CrossRefGoogle Scholar
  11. 11.
    Diaz, A., Mechin, L., Berghuis, P., Evetts, J. E.: Observation of viscous flow in YBa 2Cu 3 O 7− low-angle grain boundaries. Phys. Rev. B 58(6), R2960–R2963 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Hao, Zh., Clem, J. R.: Viscous flow motion in anisotropic type-II superconductors in low fields. IEEE Transacts. Magn. 27, 1086–1088 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Reiss, H.: Radiation heat transfer and its impact on stability against quench of a superconductor. J. Superconduct. Nov. Magn. 25, 339–350 (2012)CrossRefGoogle Scholar
  14. 14.
    Reiss, H., Troitsky, O. Yu.: Superconductor stability revisited: Impacts from coupled conductive and thermal radiative transfer in the solid. J. Superconduct. Novel Magn. 27, 717–734 (2014)CrossRefGoogle Scholar
  15. 15.
    Fastowski, W. G., Petrowski, J. W., Rowinski, A. E.: Kryotechnik (In German). Akademie-Verlag, Berlin (1970)Google Scholar
  16. 16.
    Buckel, W., Kleiner, R.: Superconductivity, Fundamentals and Applications, Transl. by Huebener, R., 2nd edn. Wiley (2004)Google Scholar
  17. 17.
    Reiss, H.: A microscopic model of superconductor stability. J. Superconduct. Novel Magn 26(3), 593–617 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khan, M. N., Zakaullah, K h: Novel techniques for characterization and kinetics studies of Bi-2223 conductors. J. Res. (Sci.) 17(1), 59–72 (2006)Google Scholar
  19. 19.
    Fricke, J., Frank, R., Altmann, H.: Wärmetransport in anisotropen supraleitenden Dünnschichtsystemen, Report E 21 - 0394 - (1994). In: Knaak, W., Klemt, E., Sommer, M., Abeln, A., Reiss, H. (eds.) Entwicklung von wechselstromtauglichen Supraleitern mit hohen Übergangstemperaturen für die Energietechnik, Bundesministerium für Forschung und Technologie, Forschungsvorhaben 13 N 5610 A, Abschlußbericht Asea Brown Boveri AG, Forschungszentrum Heidelberg (1994)Google Scholar
  20. 20.
    Schnelle, W.: Spezifische Wärme von Hoch-T c Supraleitern, Doctoral Thesis, University of Cologne, Germany (1992)Google Scholar
  21. 21.
    Drach, V., Hemberger, F., Ebert, H. - P., Körner, W.: Heat transfer into vertically oriented channels filled with liquid nitrogen, ZAE Bayern, Wuerzburg, Germany, Report ZAE 2 - 0898 - 1 (1998)Google Scholar
  22. 22.
    de Mello, E. V. L., Caixeiro, E. S., Gonzaléz, J. L.: A novel percolation theory for high temperature superconductors. Braz. J. Phys. 32, 705–709 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WuerzburgWuerzburgGermany

Personalised recommendations