Advertisement

Effect of Nd3+ Substitution on the Phase Evolution and Magnetic Properties of W-Type Strontium Hexaferrite

  • A. R. Farhadizadeh
  • S. A. Seyyed Ebrahimi
  • S. M. Masoudpanah
Original Paper

Abstract

Nd substituted W-type strontium hexaferrite powders with composition of Sr0.9Nd0.1ZnCoFe16O27 were prepared by ceramic conventional method at various calcination temperatures and times. With the Nd substitution, the singlephase hexagonal structure has been formed at higher temperatures and longer times while the effect of calcination temperature on the phase evolution was more pronounced. The saturation magnetization of SrZnCoFe16O27 increased from 72.8 to 75.0 emu/g and the coercivity decreased from 430 to 360 Oe by Nd substitution. The microwave absorption properties of hexaferrite-polymer bulk composites in epoxy resin matrix were measured in X-band frequency range (8–12 GHz). These measurements exhibited the maximum absorption of −21 dB at 9.6 GHz with an absorption bandwidth of more than 2.1 GHz for Sr0.9Nd0.1ZnCoFe16O27 with 4.5 mm thickness.

Keywords

W-type strontium hexaferrite Nd substitution Magnetic properties Microwave absorption 

Notes

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Jazirehpour, M., Seyyed Ebrahimi, S.A.: Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloys Compd. 638, 188–196 (2015)CrossRefGoogle Scholar
  2. 2.
    Jazirehpour, M., Seyyed Ebrahimi, S.A.: Carbothermally synthesized core–shell carbon–magnetite porous nanorods for high-performance electromagnetic wave absorption and the effect of the heterointerface. J. Alloys Compd. 639, 280–288 (2015)CrossRefGoogle Scholar
  3. 3.
    Hazra, S., Ghosh, B.K.: Development of a novel one-pot synthetic method for the preparation of (Mn0.2Ni0.4Zn0.4Fe2O4)x–(BaFe12O19)1x nanocomposites and the study of their microwave absorption and magnetic properties. RSC Adv. 4, 45715–45725 (2014)CrossRefGoogle Scholar
  4. 4.
    Zhu, C.L., Zhang, M.-L., Qiao, Y.-J., Xiao, G., Zhang, F., Chen, Y.-J.: Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)CrossRefGoogle Scholar
  5. 5.
    Pullar, R.C.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramic. Prog. Mater. Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  6. 6.
    Lisjak, D., Znidarsic, A., Sztanislav, A., Drofenik, M.: J. Eur. Ceram. Soc. 28, 2057 (2008)CrossRefGoogle Scholar
  7. 7.
    Iqbal, M. J., Ali Khan, R., Takeda, S., Mizukami, S., Miyazaki, T.: W-type hexaferrite nanoparticles: a consideration for microwave attenuation atwide frequency band of 0.5–10 GHz. J. Alloys Compd. 509, 7618–7624 (2011)CrossRefGoogle Scholar
  8. 8.
    Su, Z., Chen, Y., Hu, B., Sokolov, A.S., Bennett, S., Burns, L., Xing, X., Harris, V.G.: Crystallographically textured self-biased W-type hexaferrites for X-band microwave applications. J. Appl. Phys. 113, 17B305 (2013)Google Scholar
  9. 9.
    Hussain, S., Maqsood, A.: J. Alloy Compd. 466, 293–298 (2008)CrossRefGoogle Scholar
  10. 10.
    Jiang, J.J., He, H.Y., Deng, L.W.: J. Rare Earth Soc. 22, 627 (2004)Google Scholar
  11. 11.
    Kulkarni, D.K., Prakash, C.S.: Bull. Mater. Sci. 17, 35–39 (1994)CrossRefGoogle Scholar
  12. 12.
    Ounnunkad, S.: Solid State Commun. 138, 472 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Guo, F., Ji, G., Xu, J., Zou, H., Gan, S., Xu, X.: Effect of different rare-earth elements substitution on microstructure and microwave absorbing properties of a 0.9RE0.1Co2Fe16O27 (RE = La, Nd, Sm) particles. J. Magn. Magn. Mater. 324, 1209–1213 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, J., Zhang, H., Bai, S.X., Chen, K., Zhang, C.G.: J. Magn. Magn. Mater. 312, 310 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Deng, L., Ding, L., Zhou, K., Huang, S., Hu, Z., Yang, B.: Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+. J. Magn. Magn. Mater. 323, 1895–1898 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  17. 17.
    Wohlfarth, E.P.: Handbook of Magnetic Materials, vol. 3. North-Holland Publishing Company (1982)Google Scholar
  18. 18.
    Hooda, A., Sanghi, S., Agarwal, A., Dahiya, R.: Structural, dielectric and magnetic properties of Cd/Pb doped W-type hexaferrites. J. Magn. Magn. Mater. 349, 121–127 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Huang, K., Liu, X., et al.: Structural and magnetic properties of Ca-substituted barium W-type hexagonal hexaferrites. J. Magn. Magn. Mater. 379, 16–21 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, J.F., Ponton, C.B., Grössinger, R., Harris, I.R.: J. Alloys Compd. 369, 170 (2004)CrossRefGoogle Scholar
  21. 21.
    Masoudpanah, S.M., Seyyed Ebrahimi, S.A., Derakhshani, M., Mirkazemi, S.M.: Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel autocombustion method. J. Magn. Magn. Mater. 370, 122–126 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Khanmohammadi, H., Seyyed Ebrahimi, S.A.: Effect of Nd-doping on the nanocrystallite size and microwave absorption properties of Sr-hexaferrite. Functional Materials Letters 4, 1–5 (2011)CrossRefGoogle Scholar
  23. 23.
    Wang, J.F., Ponton, C.B., Harris, I.R.: J. Magn. Magn. Mater. 298, 122 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Thakur, A., Barman, P.B., Singh, R.R.: Effects of La3 + Nd3 + ions and pre-calcination on the growth of hexaferrite nanoparticles prepared by gel to crystallization technique: non-isothermal crystallization kinetics analysis. Materials Chemistry and Physics 156, 29e37 (2015)CrossRefGoogle Scholar
  25. 25.
    Wu, Y.P., Ong, C.K., Lin, G.Q., Li, Z.W.: Improved microwave magnetic and attenuation properties due to the dopant V2O5 in W-type barium ferrites. J. Phys. D: Appl. Phys. 39, 2915–2919 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Li, H.Y., Zou, H.F., Yuan, L.Y., Xu, J.J., Gan, S.C., Meng, J., Hong, G.Y.: J. Rare Earths 25, 590 (2007)CrossRefGoogle Scholar
  27. 27.
    Ahmed, M.A., Okasha, N., Oaf, M., Kershi, R.M.: J. Magn. Magn Mater. 314, 128 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Wu, Y.F., Huang, Y., Niu, L., Zhang, Y.L., Li, Y.Q., Wang, X.Y. J. Magn. Magn. Mater. 324, 616 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Li, Z.W., Chen, L., Wu, Y., Ong, C.K.: Microwave attenuation properties of W-type barium ferriteBaZn2ÀxCoxFe16O27 composites. J. Appl. Phys. 96, 534–539 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. R. Farhadizadeh
    • 1
  • S. A. Seyyed Ebrahimi
    • 1
  • S. M. Masoudpanah
    • 2
  1. 1.Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of EngineeringUniversity of TehranTehranIran
  2. 2.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations