Skip to main content
Log in

AC Magnetic Susceptibility of La1−x Ca x MnO 3 (x = 0.25, 0.33, 0.4, 0.5): Monte Carlo Approach

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

AC magnetic susceptibility of La1−x Ca x MnO3 (x = 0.25, 0.33, 04, 0.5) thin films was obtained using Monte Carlo simulations combined with Fourier transform. The material stoichiometry was varied depending on the combination of Mn 4+ and Mn 3+ ions. Hamiltonian used includes the Heisenberg interaction, magnetocrystalline anisotropy, and Zeeman effect. For determining AC susceptibility, a time-dependent external magnetic field h(t) was applied. The study was conducted for various angular frequencies and temperatures. The simulations were obtained using a graphical interface that allowed the online monitoring of the results. According to the results, the AC susceptibility decreases not only with the temperature but also with the frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dhiman, I., Das, A., Nigam, A.K., Kremer, R.K.: Effect of B-site doping in (La0.3Pr0.7)0.65Ca0.35Mn1−x B xO3 (B = Fe, Cr, Ru and Al) manganites. J. Magn. Magn. Mater. 334, 21–30 (2013)

    Article  ADS  Google Scholar 

  2. Restrepo-Parra, E., Bedoya-Hincapie, C.M., Orozco-Hernández, G., Restrepo, J., Jurado, J.F.: Monte Carlo simulation of magnetotransport properties La0.67Ca0.33MnO3 (FM) and La0.33Ca0.67MnO3 (AF) Thin Films. IEEE Trans. Magn. 47, 4686–4694 (2011)

    Article  ADS  Google Scholar 

  3. Hejtmánek, J., Jirák, Z., Arnold, Z., Maryško, M., Krupička, S., Martin, C., Damay, F.: Thermal conductivity and magnetic transitions in Mn 3+/Mn 4+ manganites. J. Appl. Phys. 83, 7204–7206 (1998)

    Article  ADS  Google Scholar 

  4. Dagotto, E.: Nanoscale phase separation and colossal magnetoresistance, the physics of manganites and related compounds, Firsth ed. Springer-Verlag, New York (2002)

    Google Scholar 

  5. Nurgaliev, T., Topal, U., Blagoev, B., Mateev, E.: Magnetic properties of LCMO/LSMO thin films on LAO and ALO substrates. J. Supercond. Nov. Magn. 25, 2495–2498 (2012)

    Article  Google Scholar 

  6. Prieto, P., Marín, L., Diez, S.M., Ramirez, J.-G., Gómez, M.E.: Influence of layer-thickness ratio on magnetic properties in F-La2/3Ca1/3MnO3/AF-La1/3Ca2/3MnO3 bilayers. J. Supercond. Nov. Magn. 25, 2193–2198 (2012)

    Article  Google Scholar 

  7. Nucara, A., Maselli, P., Calvani, P., Sopracase, R., Ortolani, M., Gruener, G., Cestelli Guidi, M., Schade, U., García, J.: Sub-terahertz excitations in manganites with commensurate charge order. J. Supercond. Nov. Magn. 22, 13–16 (2009)

    Article  Google Scholar 

  8. Alexandrov, A.S.: Phase separation of electrons strongly coupled with phonons in cuprates and manganites. J. Supercond. Nov. Magn. 22, 95–101 (2009)

    Article  Google Scholar 

  9. Egami, T., Louca, D.: Structural effects in magnetoresistive manganites and mechanism of metal-insulator transition. J. Supercond. Nov. Magn. 13, 247–261 (2000)

    Article  ADS  Google Scholar 

  10. Kneller, E.: Ferromagnetismus. Springer, Heidelberg, Berlin (1962)

    Book  MATH  Google Scholar 

  11. Markovich, V., Fita, I., Puzniak, R., Wisniewski, A., Suzuki, K., Cochrane, J.W., Yuzhelevskii, Y., Mukovskii, Y.M., Gorodetsky, G.: Phys. Rev. B 71, 224409 (2005)

    Article  ADS  Google Scholar 

  12. Vanderbemden, Ph., Vertruyen, B., Rulmont, A., Cloots, R., Dhalenne, G., Ausloos, M.: AC magnetic behavior of large-grain magnetoresistive La0.78Ca0.22Mn0.90Ox materials. Phys. Rev. B 68, 224418 (2003)

    Article  ADS  Google Scholar 

  13. Leyva, A.G., Troiani, H.E., Curiale, C.J., Sanchez, R.D., Levy, P.: Relationship between the synthesis parameters and the morphology of manganite nanoparticle-assembled nanostructures. Phys. B Condens. Matter 298, 344–347 (2007)

    Article  ADS  Google Scholar 

  14. Bedoya-Hincapié, C.M., Jurado, F.J., Riano-Rojas, J.C., Restrepo, J.: Monte Carlo study of the critical behavior and magnetic properties of La2/3Ca1/3MnO3 thin films. J. Magn. Magn. Mater. 322, 3514–3518 (2010)

    Article  ADS  Google Scholar 

  15. Şen, C., Alvarez, G., Dagotto, E.: Insulator-to-metal transition induced by disorder in a model for manganites. Phys. Rev. B 70, 064428 (2004)

    Article  ADS  Google Scholar 

  16. Sengupta, P., Sandvik, A.W., Singh, R.R.P.: Specific heat of quasi-two-dimensional antiferromagnetic Heisenberg models with varying interplanar couplings. Phys. Rev. B 68, 094423 (2002)

    Article  ADS  Google Scholar 

  17. Panaccione, G., Offi, F., Sacchi, M., Torelli, P.: Hard X-ray PhotoEmission Spectroscopy of strongly correlated systems. C. R. Phys. 9, 524–536 (2008)

    Article  ADS  Google Scholar 

  18. Wollan, E.O., Koehler, W.E.: Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1−x)La,xCa]MnO3. Phys. Rev. 100, 545–564 (1955)

    Article  ADS  Google Scholar 

  19. Crisan, O., Angelakeris, M., Flevaris, N.K., Sobal, N., Giersig, M.: Anisotropies in ferromagnetic nanoparticles: simulation and experimental approach. Sens. Actuators, A 106, 130–133 (2003)

    Article  Google Scholar 

  20. Restrepo-Parra, E., Salazar-Enríquez, C.D., Londoño-Navarro, J., Jurado, J.F., Restrepo, J.: Magnetic phase diagram simulation of La1−xCaxMnO3 system by using Monte Carlo, Metropolis algorithm and Heisenberg model. J. Magn. Magn. Mater. 323, 1477–1483 (2011)

    Article  ADS  Google Scholar 

  21. Cimpoesu, D., Stancu, A., Spinu, L.: Physics of complex transverse susceptibility of magnetic particulate systems. Phys. Rev. B 76, 054409 (2007)

    Article  ADS  Google Scholar 

  22. Trivijitkasem, S., Boonchun, A., Chantharangsi, Ch., Paksunchai, Ch.: Analytical study of AC magnetic susceptibility of (Bi, Pb) Sr-Ca-Cu-O superconducting systems using Bean critical state model. Kasetsart J. (Nat. Sci.) 43, 353–360 (2009)

    Google Scholar 

  23. Lynn, J.W., Erwin, R.W., Borchers, J.A., Huang, Q., Santoro, A., Pengand, J.-L., Li, Z.Y.: Unconventional ferromagnetic transition in La1-Xcaxmno3. Phys. Rev. Lett. 76, 4046–4049 (1996)

    Article  ADS  Google Scholar 

  24. Freericks, J.K., Jarrell, M.: Magnetic phase diagram of the Hubbard model. Phys. Rev. Lett. 74, 186–189 (1994)

    Article  ADS  Google Scholar 

  25. Taran, S., Sun, C.P., Huang, C.L. , H.D., Yang, H.D., Nigam, A.K., Chaudhuri, B.K., Chatterjee, S.: Electrical and magnetic properties of Y-doped La0.5Sr0.5MnO3 manganite system: observation of step-like magnetization. J. Alloys Compd. 644, 363–370 (2015)

    Article  Google Scholar 

  26. Liu, X. J., Fang, Y.M., Wang, C.P., Ma, Y.Q., Peng, D.L.: Effect of external magnetic field on thermodynamic properties and phase transitions in Fe-based alloys. J. Alloys Compd. 459, 169–173 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Departamento de Física y Química of La Universidad Nacional de Colombia Sede Manizales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Restrepo-Parra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barco-Ríos, H., Restrepo-Parra, E. AC Magnetic Susceptibility of La1−x Ca x MnO 3 (x = 0.25, 0.33, 0.4, 0.5): Monte Carlo Approach. J Supercond Nov Magn 29, 1287–1293 (2016). https://doi.org/10.1007/s10948-016-3370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3370-0

Keywords

Navigation