Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 2, pp 487–491 | Cite as

Spontaneous Polarization and Magnetic Investigation Of BiXO3 (X=Co, Mn, Fe, V, Zn): First-Principle Study

  • A. Abbassi
  • H. Zaari
  • C. Azahaf
  • H. Ez-Zahraouy
  • A. Benyoussef
Original Paper


Spontaneous polarization and magnetic properties of BiXO3 with X = Co, Fe, Mn, V, and Zn have been studied using the full-potential, linear augmented plane wave (FP-LAPW) method with GGA and mBJ implemented in the WIEN2K code. The investigation shows that BiXO3 with X = Co, Fe, Mn, and Zn is stable in the antiferromagnetic state while for BiVO3, the magnetic stability was shown in the ferromagnetic state. The calculation shows the existence of a charge transfer between p states of oxygen and d states of Co and Fe for X = Co and Fe. The existence of Co, Fe, Mn, and V makes BiXO3 a non-absorbent compound. However, for Zn, the structure behaves as an absorbent compound especially in the visible light. We note that the spontaneous polarization is calculated with Berry phase BI and was found very close and comparable with other works.


Magnetic materials Magnetic properties Ferroelectricity 


  1. 1.
    Smolenski, G., Isupov, V., Agranovskaya, A., Kranik, N.: Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  2. 2.
    Smolenski, G., Yudin, V., Sher, E., Stolypin, Y. E.: Sov. Phys. JETP 16, 622 (1963)ADSGoogle Scholar
  3. 3.
    Schmidt, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 62, 317–338 (1994)CrossRefGoogle Scholar
  4. 4.
    Loidl, A., von Loehneysen, H., Kalvius, M.: Multiferroics. J. Phys.: Condens. Matter 20, 430301 (2008)Google Scholar
  5. 5.
    Cheong, S.W., Mostovoy, M.: Nat. Mater. 6, 13–20 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Katsura, H., Nagaosa, N., Balatsky, A. V.: Phys. Rev. Lett. 95, 057205 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Sergienko, I.A., Dagotto, E.: Phys. Rev. B 73, 094434 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Cai, M-Q., Lui, J.-C., Yang, G.-W., Cao, Y.-L., Tan, X., Chen, X.-Y., Wang, Y.-G., Wang, L.-L., Hu, W.-Y.: J. Chem. Phys. 126, 154708 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Slater, J.C.: Atomic radii in crystals. J. Chem. Phys. 41, 3199 (1964)ADSCrossRefGoogle Scholar
  10. 10.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn. Universität Wien, Austria (2001)Google Scholar
  11. 11.
    Perdew, J.P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 77(18), 3865–3868 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Blaha, P., Schwarz, K.: “WIEN2k”. Vienna University of Technology, Austria (2006)MATHGoogle Scholar
  13. 13.
    Ahmed, S.J., Kivinen, J., Zaporzan, B., Curiel, L., Pichardo, S., Rubel, O.: Comp. Phys. Commun. 184, 647 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    McLeod, J.A., Pchelkina, Z.V., Finkelstein, L.D., Kurmaev, E.Z., Wilks, R.G., Moewes, A., Solovyev, I.V., Belik, A.A., Takayama-Muromachi, E.: Phys. Rev. B 81, 144103 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Naganuma, H., Yasui, S., Nishida, K., Iijima, T., Funakubo, H., Okamura, S.: J. Appl. Phys. 109, 07D917 (2011)Google Scholar
  16. 16.
    Belik, A.A., Iikubo, S., Yokosawa, T., Kodama, K., Igawa, N., Shamoto, S., Azuma, M., Takano, M., Kimoto, K., Matsui, Y., Takayama-Muromachi, E.: J. Am. Chem. Soc. 129(4), 971–977 (2007)CrossRefGoogle Scholar
  17. 17.
    Wang, J., et al.: Science 299(5613), 1719–1722 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Abbassi
    • 1
  • H. Zaari
    • 1
  • C. Azahaf
    • 1
  • H. Ez-Zahraouy
    • 1
  • A. Benyoussef
    • 1
  1. 1.Laboratory of Magnetism and High Energy Physics (URAC 12) B.P. 1014, Faculty of SciencesMohammed V UniversityRabatMorocco

Personalised recommendations