Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 1, pp 253–263 | Cite as

Magneto-Optical and Catalytic Properties of Recyclable Spinel NiAl 2 O 4 Nanostructures Using Facile Combustion Methods

  • S. Jayasree
  • A. Manikandan
  • S. Arul Antony
  • A. M. Uduman Mohideen
  • C. Barathiraja
Original Paper

Abstract

Spinel nickel aluminate (NiAl 2 O 4) nanospheres (NSPs) and nanoplatelets (NPLs) were successfully synthesized using a facile microwave combustion method (MCM) and conventional combustion method (CCM), respectively, using urea as the fuel. The as-prepared samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), UV–Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, and vibrating sample magnetometer (VSM) analysis. Powder XRD, FT-IR, EDX, and SAED results showed that the samples were pure phase spinel NiAl 2 O 4 nanocrystals without any other secondary phase impurity. UV–Vis DRS and PL spectroscopy results were used to calculate the energy band gap (E g) value of the samples which is 3.41 and 3.08 eV for NiAl 2 O 4 NSPs and NiAl 2 O 4 NPLs, respectively. VSM results of the NiAl 2 O 4 NPLs sample show lower M s (49.16 × 10 −3 emu/g) values compared with the NiAl 2 O 4 NSPs sample (73.42 × 10 −3 emu/g), which confirm that both the products have ferromagnetic behavior. NiAl 2 O 4 NSPs were found to have higher surface area than NiAl 2 O 4 NPLs, which in turn leads to the improved performance towards the selective oxidation of benzyl alcohol into benzaldehyde, with 100 % selectivity, and it was found that the NiAl 2 O 4 NSPs sample show higher conversion (96.25 %) than NiAl 2 O 4 NPLs (85.37 %). The as-prepared samples show high activity, good reusability, remarkable stability, and environmentally friendly materials for industrial and technological applications.

Graphical Abstract

Spinel NiAl2O4-NSPs and NiAl2O4-NPLs samples were synthesized by MCM and CCM techniques respectively. Structural, morphological, magneto-optical and catalytic properties were studied systematically. The calculated optical band gap value of the sample NiAl2O4-NSPs is 3.41 eV, which is higher than NiAl2O4-NPLs (3.08 eV), due to the smaller particle size. The relatively lower Ms (49.16 × 10-3 emu/g) of NiAl2O4-NPLs shows that it is weak ferromagnetism and high Ms (73.42 × 10-3 emu/g) of NiAl2O4-NSPs confirms its ferromagnetic behavior. Catalytic oxidation of benzyl alcohol into benzaldehyde was found that the sample NiAl2O4-NSPs show higher conversion (96.25 %) than NiAl2O4-NPLs (85.37 %) with 100 % selectivity.

Keywords

Nanocrystals Spinel NiAl 2O4 Microwave combustion Opto-magnetic properties Catalytic properties 

References

  1. 1.
    Baykal, A., Deligoz, H., Sozeri, H., Durmus, Z., Toprak, M. S.: J. Supercond. Nov. Magn 25, 1879 (2012)CrossRefGoogle Scholar
  2. 2.
    Karaoglu, E., Baykal, A.: J Supercond. Nov. Magn 27, 2041 (2014)CrossRefGoogle Scholar
  3. 3.
    Amir, Md., Sertkol, M., Baykal, A., Sozeri, H.: J Supercond. Nov. Magn 28, 2447 (2015)CrossRefGoogle Scholar
  4. 4.
    Genc, F., Unal, B., Baykal, A., Sozeri, H.: J Supercond. Nov. Magn 28, 1055 (2015)CrossRefGoogle Scholar
  5. 5.
    Amir, Md., Baykal, A., Guner, S., Sertkol, M., Sozeri, H., Toprak, M.: J Inorg. Organomet. Polym 25, 747 (2015)CrossRefGoogle Scholar
  6. 6.
    Amir, Md., Baykal, A., Sertkol, M., Sozeri, H.: J Inorg. Organomet. Polym 25, 619 (2015)CrossRefGoogle Scholar
  7. 7.
    Guner, S., Amir, Md., Geleri, M., Sertkol, M., Baykal, A.: Ceram. Int 41, 10915 (2015)CrossRefGoogle Scholar
  8. 8.
    Amir, Md., Unal, B., Shirsath, S.E., Geleri, M., Sertkol, M., Baykal, A.: Superlatt. Microstruct 85, 747 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Gozüak, F., Koseoglu, Y., Baykal, A., Kavas, H.: J. Magn. Magn. Mater 321, 2170 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Koseoglu, Y., Baykal, A., Gozuak, F., Kavas, H.: Polyhedron 28, 2887 (2009)CrossRefGoogle Scholar
  11. 11.
    Manikandan, A., Durka, M., Arul Antony, S.: J Supercond. Nov. Magn 28, 209 (2015)CrossRefGoogle Scholar
  12. 12.
    Manikandan, A., Durka, M., Arul Antony, S.: J Supercond. Nov. Magn 27, 2841 (2014)CrossRefGoogle Scholar
  13. 13.
    Manikandan, A., Sridhar, R., Arul Antony, S., Ramakrishna, S.: J. Mol. Struct 1076, 188 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Manikandan, A., Durka, M., Seevakan, K., Arul Antony, S.: J Supercond. Nov. Magn 28, 1405 (2015)CrossRefGoogle Scholar
  15. 15.
    Manikandan, A., Arul Antony, S., Sridhar, R., Bououdina, M.: J. Nanosci. Nanotechnol 15, 4948 (2015)CrossRefGoogle Scholar
  16. 16.
    Manikandan, A., Durka, M., Arul Antony, S.: Adv. Sci. Eng. Med 7, 33 (2015)CrossRefGoogle Scholar
  17. 17.
    Manikandan, A., Hema, E., Durka, M., Seevakan, K., Alagesan, T., Arul Antony, S.: J Supercond. Nov. Magn 28, 1783 (2015)CrossRefGoogle Scholar
  18. 18.
    Han, Y.S., Li, J.B., Ning, X.S., Chi, B.: J. Am. Ceram. Soc 88, 3455 (2005)CrossRefGoogle Scholar
  19. 19.
    Fonseca, R.L., Gonzalez, C.J., Rivas, B., Ortiz, J.I.G.: Appl. Catal. A 437, 53 (2012)CrossRefGoogle Scholar
  20. 20.
    Li, G., Hu, L., Hill, J.M.: Appl. Catal. A 301, 16 (2006)CrossRefGoogle Scholar
  21. 21.
    Cesteros, Y., Salagre, P., Medina, F., Sueiras, J.E. Chem. Mater 12, 331 (2000)CrossRefGoogle Scholar
  22. 22.
    Cui, H., Zayat, M., Levy, D.: J. Non-Cryst. Solids 351, 2102 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Seo, J., Youn, M., Cho, K., Park, S., Lee, S., Lee, J., Song, I.: Korean J. Chem. Eng 25, 41 (2008)CrossRefGoogle Scholar
  24. 24.
    Hosseini, S.A., Niaei, A., Salari, D., Nabavi, S.R.: Ceram. Int 38, 1655 (2012)CrossRefGoogle Scholar
  25. 25.
    Valan, M.F., Manikandan, A., Arul Antony, S.: J. Nanosci. Nanotechnol 15, 4580 (2015)CrossRefGoogle Scholar
  26. 26.
    Valan, M.F., Manikandan, A., Arul Antony, S.: J. Nanosci. Nanotechnol 15, 4543 (2015)CrossRefGoogle Scholar
  27. 27.
    Manikandan, A., Arul Antony, S.: J Supercond. Nov. Magn 27, 2725 (2014)CrossRefGoogle Scholar
  28. 28.
    Manikandan, A., Durka, M., Arul Antony, S. J Inorg. Organomet. Polym 25, 804 (2015)CrossRefGoogle Scholar
  29. 29.
    Manikandan, A., Durka, M., Arul Antony, S.: J. Inorg. Organomet. Polym. 25, 1019 (2015)CrossRefGoogle Scholar
  30. 30.
    Manikandan, A., Durka, M., Arul Antony, S.: J Supercond. Nov. Magn 28, 2047 (2015)CrossRefGoogle Scholar
  31. 31.
    Meyer, F., Hempelmann, R., Mathurband, S., Veith, M.: J. Mater. Chem 9, 1755 (1999)CrossRefGoogle Scholar
  32. 32.
    Manikandan, A., Saravanan, A., Arul Antony, S., Bououdina, M.: J. Nanosci. Nanotechnol 15, 4358 (2015)CrossRefGoogle Scholar
  33. 33.
    Chinnaraj, K., Manikandan, A., Ramu, P., Arul Antony, S., Neeraja, P.: J Supercond. Nov. Magn 28, 179 (2015)CrossRefGoogle Scholar
  34. 34.
    Jeevanandam, P., Koltypin, Y., Gedanken, A.: Mater Sci. Eng. B 90, 125 (2002)CrossRefGoogle Scholar
  35. 35.
    Bayal, N., Jeevanandam, P.: J. Alloys Compd 516, 27 (2012)CrossRefGoogle Scholar
  36. 36.
    Wang, S.F., Gu, F., Lu, M.K., Cheng, X.F., Zou, W.G., Zhou, G.J., Wang, S.M., Zhou, Y.Y.: J. Alloys Compd 394, 255 (2005)CrossRefGoogle Scholar
  37. 37.
    Bai, H., Liu, Z., Sun, D.D.: Int. J. Hydrogen Energy 37, 13998 (2012)CrossRefGoogle Scholar
  38. 38.
    Schmidt, T., Lischka, K., Zulehner, W.: Phys. Rev. B 45, 8989 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    Sendi, R.K., Mahmudm, S.: Appl. Surf. Sci 258, 8026 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Bhargava, R., Sharma, P.K., Dutta, R.K., Kumar, S., Pandey, A.C., Kumar, N.: Mater. Chem. Phys 120, 393 (2010)CrossRefGoogle Scholar
  41. 41.
    Shen, Y., Li, W., Li, T.: Mater. Lett 65, 2956 (2011)CrossRefGoogle Scholar
  42. 42.
    Ichiyanagi, Y., Kimishima, Y., Yamada, S.: J. Magn. Magn. Mater 272, E1245 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Bhatt, A.S., Bhat, D.K., Tai, C., Santosh, M.S.: Mater. Chem. Phys 125, 347 (2011)CrossRefGoogle Scholar
  44. 44.
    Albuquerque, A.S., Tolentino, M.V., Ardisson, J.D., Moura, F.C., Mendonca, R., Macedo, W.A.: Ceram. Int 38, 2225 (2012)CrossRefGoogle Scholar
  45. 45.
    Hankare, P.P., Kamble, P.D., Maradur, S.P., Kadam, M. R., Sankpal, U.B., Patil, R.P., Nimat, R.K., Lokhande, P.D.: J. Alloys Compd 487, 730 (2009)CrossRefGoogle Scholar
  46. 46.
    Ali, S.R., Chandra, P., Latwal, M., Jain, S.K., Bansal, V.K., Singh, S.P.: Chin. J. Catal 32, 1844 (2011)CrossRefGoogle Scholar
  47. 47.
    Ma, C.Y., Cheng, J., Wang, H.L., Hu, Q., Tian, H., He, C., Hao, Z.P.: Catal. Today 158, 246 (2010)CrossRefGoogle Scholar
  48. 48.
    Seo, J.G., Youn, M.H., Park, S., Park, D.R., Jung, J.C., Chung, J.S., Song, I.K.: Catal. Today 146, 44 (2009)CrossRefGoogle Scholar
  49. 49.
    Loginova, E., Cosandey, F., Madey, T. E.: Surf. Sci 601, L11 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Boudreau, M.D., Beland, F.A.: J Environ. Sci. Health Part C 24, 103 (2006)CrossRefGoogle Scholar
  51. 51.
    Hema, E., Manikandan, A., Karthiga, P., Durka, M., Arul Antony, S., Venkatraman, B.R.: J Supercond. Nov. Magn 28, 253 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryKunthavai Naacchiyaar Government Arts College for Women (Autonomous)Tamil NaduIndia
  2. 2.Postgraduate and Research Department of ChemistryKhadir Mohideen CollegeTamil NaduIndia
  3. 3.Department of Chemistry, Bharath Institute of Higher Education and ResearchBharath UniversityTamil NaduIndia
  4. 4.Postgraduate and Research Department of ChemistryPresidency College (Autonomous)Tamil NaduIndia
  5. 5.Department of ChemistryMannai Rajagopalaswami Government Arts CollegeTamil NaduIndia

Personalised recommendations