Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 1, pp 199–205 | Cite as

Synthesis, Characterization, and Dielectric Properties of BaFe10(Mn2+Zn2+Zn2+)O19 Hexaferrite

  • A. Baykal
  • M. Demir
  • B. Ünal
  • H. Sözeri
  • M. S. Toprak
Original Paper

Abstract

Barium hexaferrite with nominal chemical composition BaMnZn2Fe10O19 has been synthesized by sol–gel method, using polymethyl methacrylate (PMMA) as a template. Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRD) were used for approving the formation of barium hexaferrites. In addition, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were performed to investigate the structural and morphological properties of BaM. The dielectric properties were studied by impedance measurements as a function of frequency (in the range 0.1 Hz–1 MHz). The XRD patterns confirmed the formation of single-phase magnetoplumbite with crystallite size around 73 nm. The results of dielectric parameters and conductivity measurements showed three regions with different behaviors in electrical conduction mechanism.

Keywords

Substituted barium hexaferrite Dielectric property AC conductivity Sol–gel method 

Notes

Acknowledgments

This work was supported by Fatih University under BAP Grant no.: 10790 and in part by Swedish Research Council (VR-SRL 2013-6780).

References

  1. 1.
    Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S.: Ceram. Int. 37, 1833 (2011)CrossRefGoogle Scholar
  2. 2.
    Onreabroy, W., Papato, K., Rujijanagul, G., Pengpat, K., Tunkasiri, T.: Ceram. Int. 38S, S415 (2012)CrossRefGoogle Scholar
  3. 3.
    Ullah, Z., Atiq, S., Naseem, S.: J. Alloy. Compd. 555, 263 (2013)CrossRefGoogle Scholar
  4. 4.
    Durmus, Z., Sozeri, H., Toprak, M.S., Baykal, A.: Nano-Micro Letters 3(2), 194 (2011)CrossRefGoogle Scholar
  5. 5.
    Petrila, I, Tudorache, F: Superlattice Microst. 7, 46 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Katlakunta, S., Meena, S.S., Srinath, S., Bououdina, M., Sandhya, R., Praveena, K.: Mater. Res. Bull. 63, 58 (2015)CrossRefGoogle Scholar
  7. 7.
    Castellanos, P.A.M., Borges, A.C.M., Melgar, G.O., Garcia, J.A., Alcaide, E.G.: Physica B 406, 3130 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Ashiq, M.N., Shakoor, S., Najam-ul-Haq, M., Warsi, M.F., Ali, I., Shakir, I.: J. Magn. Magn. Mater. 374, 173 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Din, M.F., Ahmad, I., Ahmad, M., Farid, M.T., Iqbal, M.A., Murtaza, G., Akhtar, M.N., Shakir, I., Warsi, M.F., Khan, M.A.: J. Alloy. Compd. 584, 646 (2014)CrossRefGoogle Scholar
  10. 10.
    Ali, I., Islam, M.U., Awan, M.S., Ahmad, M., Ashiq, M.N., Naseem, S.: J. Alloy. Compd. 550, 564 (2013)CrossRefGoogle Scholar
  11. 11.
    Willis, A.L., Turro, N.J., O’Brien, S.: Chem. Mater. 17, 5970 (2005)CrossRefGoogle Scholar
  12. 12.
    Zhang, H. J., Yao, X., Zhang, L.Y.: Mater. Sci. Eng. 84, 252 (2001)CrossRefGoogle Scholar
  13. 13.
    Li, L., Chen, K., Liu, H., Tong, G., Qian, H., Hao, B.: J. Alloy. Compd. 557, 11 (2013)CrossRefGoogle Scholar
  14. 14.
    Topal, U., Ozkan, H., Dorosinskii, L.: J. Alloy. Compd. 428, 17 (2007)CrossRefGoogle Scholar
  15. 15.
    Mandizadeh, S., Soofivand, F., Salavati-Niasari, M., Bagheri, S.: J. Ind. Eng. Chem. 26, 167 (2015)CrossRefGoogle Scholar
  16. 16.
    Mu, G., Chen, N., Pan, X., Shen, H., Gu, M.: Mater. Lett. 62, 840 (2008)CrossRefGoogle Scholar
  17. 17.
    Carreno, T.G., Morales, M.P., Serna, C.J.: Mater. Lett. 43, 97 (2000)CrossRefGoogle Scholar
  18. 18.
    Birsöz, B., Baykal, A., Sözeri, H., Toprak, M.S.: J. Alloy. Compd. 493, 481 (2010)CrossRefGoogle Scholar
  19. 19.
    Baykal, A.: J. Supercond. Nov. Magn. 27, 877 (2014)CrossRefGoogle Scholar
  20. 20.
    Sözeri, H., Baykal, A., Ünal, B.: Phys. Status Solidi A 209, 2002 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Sözeri, H., Mehmedi, Z., Kavas, H., Baykal, A.: Ceram. Int. 41, 9602–9609 (2015)CrossRefGoogle Scholar
  22. 22.
    Panteny, S., Stevens, R., Bowen, C.R.: Ferroelectrics 319, 199 (2005)CrossRefGoogle Scholar
  23. 23.
    James, A.R., Priya, S., Uchino, K., Srinivas, K.: J. Appl. Phys. 90, 3504–3508 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Neagu, R.M., Neagu, E., Bonanos, N., Pissis, P.: J. Appl. Phys. 88, 6669 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Furukawa, T., Yasuda, K., Takahashi, T.: IEEE T. Dielect El. In. 11, 65 (2004)CrossRefGoogle Scholar
  26. 26.
    Jonscher, A. K.: Nature 253, 717–719 (1975)ADSCrossRefGoogle Scholar
  27. 27.
    Bobnar, V., Lunkenheimer, P., Henberger, J., Loidl, A., Lichtenberg, F., Mannhart, J.: Phys. Rev. Lett. 65, 155115 (2002)Google Scholar
  28. 28.
    Wagner, K.W.: Ann. Phys. 345, 817 (1913)CrossRefGoogle Scholar
  29. 29.
    Maxwell, J.C.: Oxford University Press, Oxford (1929). section 328Google Scholar
  30. 30.
    Sirdeshmukh, L., Kumar, K.K., Laxman, S.B., Krishna, A.R., Sathaiah, G.: B. Mater. Sci. 21, 219 (1998)CrossRefGoogle Scholar
  31. 31.
    Hudson, A.S.: Marconi Review 37, 43 (1968)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Baykal
    • 1
  • M. Demir
    • 1
  • B. Ünal
    • 2
  • H. Sözeri
    • 3
  • M. S. Toprak
    • 4
  1. 1.Department of ChemistryFatih UniversityIstanbulTurkey
  2. 2.Departments of Computer/Software Engineeringİstanbul Sabahattin Zaim UniversityIstanbulTurkey
  3. 3.TUBITAK-UMENational Metrology InstituteGebzeTurkey
  4. 4.Department of Materials and Nano PhysicsKTH-Royal Institute of TechnologyKistaSweden

Personalised recommendations