Journal of Superconductivity and Novel Magnetism

, Volume 29, Issue 2, pp 343–347 | Cite as

Fabrication of Co2Ni8/CNTs Alloy Hollow-nanostructured Microspheres: Facile Synthesis and Magnetic Properties

  • Xiuting Wang
  • Zhanyong Wang
  • Wenya Yang
  • Tianpeng Wang
  • Qizhong Chen
Original Paper


Co2Ni8 hollow-nanostructured microspheres were synthesized by template-free hydrothermal method at 150 C. Mixing of the carbon nanotubes (CNTs) and Co2Ni8, Co2Ni8/CNTs can be attained at 400 C after vacuum heat treatment. The amorphous nature of these powders was confirmed by various techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). An SEM of heated Co2Ni8 sample showed near-uniform particles with sizes of 15μm. The observed magnetization of the Co2Ni8/CNTs (59.40 emu/g) was lower than that of Co2Ni8 (97.10 emu/g) with VSM. However, the coercivity (H c) (24 Oe) and saturation magnetization (M s) (145.00 emu/g) of Co/CNTs were better than those of Co (150 Oe, 80.80 emu/g).


Hydrothermal method Hollow-nanostructured Magnetic properties Cobalt-nickel 



This work was supported by the Project of the Shanghai Education Commission of the People’s Republic of China (14ZZ165 and J51504) and State Key Laboratory for Advanced Metals and Materials of the People’s Republic of China (2013- Z02).


  1. 1.
    Soumare, Y., Piquemal, J.Y., Maurer, T., Chaboussant, G., Ott, F., Falqui, A., Viau, G.: J. Mater. Chem. 18(46), 5696 (2008)CrossRefGoogle Scholar
  2. 2.
    Winnischofer, H., Rocha, T.C., Nunes, W.C., Socolovsky, L.M., Knobel, M., Zanchet, D.: Acs. Nano. 2(6), 1313 (2008)CrossRefGoogle Scholar
  3. 3.
    Rafique, M.Y., Pan, L., Iqbal, M.Z., Qiu, H., Farooq, M.H., Guo, Z., Ellahi, M.: J. Nanopart. Res. 15(7), 1768 (2013)CrossRefGoogle Scholar
  4. 4.
    Sun, L.F., Mao, J.M., Pan, Z.W., Chang, B.H., Zhou, W.Y., Wang, G., Xie, S. S.: Appl. Phy. Lett. 74(5), 644 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Lu, W., Sun, D., Yu, H.: J. Alloys Comp. 229, 546 (2013)Google Scholar
  6. 6.
    Kapoor, S., Salunke, H.G., Tripathi, A.K., Kulshreshta, S.K., Mittal, J.P.: Mater. Res. Bull. 35(1), 143 (2000)CrossRefGoogle Scholar
  7. 7.
    Gomez, E., Pane, S., Valles, E.: Electrochim. Acta. 51(1), 146 (2005)CrossRefGoogle Scholar
  8. 8.
    Ahmed, J., Sharma, S., Ramanujachary, K.V., Lofland, S.E., Ganguli, A.K.: J. Colloid. Interface. Sci. 336(2), 814 (2009)CrossRefGoogle Scholar
  9. 9.
    Panday, S., Daniel, B. S.S., Jeevanandam, P.: J. Magn. Magn. Mater. 323(17), 2271 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Olvera, S., Sánchez-Marcos, J., Palomares, F.J., Salas, E., Arce, E.M., Herrasti, P.: Mater. Character 79, 93 (2014)Google Scholar
  11. 11.
    Liu, Q., Guo, X., Wang, T., Li, Y., Shen, W.: Mater. Lett. 64(11), 271 (2010)Google Scholar
  12. 12.
    Guo, X.H., Li, Y., Liu, Q.Y., Shen, W.J., Chin, J.: Catal. 33(4), 645 (2012)Google Scholar
  13. 13.
    Li, H., Liao, J., Feng, Y., Yu, S., Zhang, X., Jin, Z.: Mater. Lett. 67(1), 346 (2012)CrossRefGoogle Scholar
  14. 14.
    Pan, S., An, Z., Zhang, J., Song, G.: Mater. Lett. 64(3), 453 (2010)CrossRefGoogle Scholar
  15. 15.
    Soumare, Y., Garcia, C., Maurer, T., Chaboussant, G., Ott, F., Fievet, F., Viau, G.: Adv. Funct. Mater. 19(12), 1971 (2009)CrossRefGoogle Scholar
  16. 16.
    Ung, D., Soumare, Y., Chakroune, N., Viau, G., Vaulay, M.J., Richard, V., Fiévet, F.: Chem. Mater. 19(8), 2084 (2007)CrossRefGoogle Scholar
  17. 17.
    Pan, S., An, Z., Zhang, J., Song, G.: Mater. Chem. Phy. 124(1), 342 (2010)CrossRefGoogle Scholar
  18. 18.
    Nie, D., Xu, C., Chen, H., Wang, Y., Li, J., Liu, Y.: Mater. Lett. 131, 306 (2014)CrossRefGoogle Scholar
  19. 19.
    Liu, X.M., Fu, S.Y., Huang, C.J.: Mater. Lett. 59(28), 3791 (2005)CrossRefGoogle Scholar
  20. 20.
    Cao, Zhang, X., Zhu, Y., Ji, Y.: Guangzhou Chem. 40(11), 3 (2012)Google Scholar
  21. 21.
    Xiang, J., Zhang, X., Ye, Q., Li, J., Shen, X.: Mater. Res. Bull. 60, 589 (2014)CrossRefGoogle Scholar
  22. 22.
    Feng, W., Zhang, L., Liu, Y., Li, X., Cheng, L., Zhou, S., Bai, H.: (2015). Mater. Sci. Eng., AGoogle Scholar
  23. 23.
    Guo, S., Sivakumar, R., Kagawa, Y.: Adv. Eng. Mater. 9(1-2), 84 (2007)CrossRefGoogle Scholar
  24. 24.
    Zhu, L.P., Xiao, H.M., Fu, S.Y.: Eur. J. Inorg. Chem. 25, 3947 (2007)CrossRefGoogle Scholar
  25. 25.
    Yang, H.G., Zeng, H.C.: J. Phys. Chem. B 108(11), 3492 (2004)CrossRefGoogle Scholar
  26. 26.
    Barakat, N.A.M., Abadir, M.F., Nam, K.T., Hamza, A.M., Al-Deyab, S.S., Baek, W.I., Kim, H.Y.: J. Mater. Chem. 21, 10957 (2011)CrossRefGoogle Scholar
  27. 27.
    Carroll, K.J., Huba, Z.J., Spurgeon, S.R., Qian, M., Khanna, S.N., Hudgins, D.M., Taheri, M.L., Carpenter, E.E.: Appl. Phy. Lett. 101(1), 012409 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiuting Wang
    • 1
  • Zhanyong Wang
    • 1
  • Wenya Yang
    • 1
  • Tianpeng Wang
    • 1
  • Qizhong Chen
    • 1
  1. 1.Department of Material Science and EngineeringShanghai Institute of TechnologyShanghaiChina

Personalised recommendations