Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 12, pp 3707–3712 | Cite as

Structural, Ferroelectric and Ferromagnetic Properties of Single-Phase Bi0.95Ba0.05FeO3 Thin Film Prepared by Pulsed Laser Deposition

  • XiaoLi Wen
  • Zhao Chen
  • Xin Lin
Original Paper


Single-phase Bi0.95Ba0.05FeO3 (BBFO) thin film was grown on Si (111) substrate by a pulsed laser deposition method. The analysis of crystal structure identifies that the BBFO thin film has a rhombohedrally distorted perovskite structure with R3c space group. The morphologies investigated by high-resolution field emission transmission electron microscopy and atomic force microscopy reveal that the BBFO thin film is polycrystalline and consists of uniform grains with an average size of about 110 nm, of which surfaces are smooth. Ferroelectric property of the BBFO thin film was analyzed and the remnant polarization (P r) is about 3.9 μC cm−2. Magnetic measurements reveal that the BBFO thin film has a strong ferromagnetic behavior at room temperature with a 36.76 emu cm−3 saturated magnetization (M s) and 2998 Oe coercivity. Furthermore, the original mechanisms of ferroelectric and ferromagnetic properties were discussed. This work is believed to contribute a novel multiferroic material, which should open a way toward the integration of multiferroic material and semiconductor material for future tunable multifunctional devices.


Ferroelectric property Structural characteristics Single phase Ferromagnetic property 



This work was supported by the National Natural Science Foundation of China (Project No. 61078057), Natural Science Foundation of Shaanxi Province, China (Project Nos. 2015JM5259 and 2011GM6013), Foundation for Fundamental Research, Northwestern Polytechnical University, China (Project Nos. JC20110270 and 3102014JCQ01029), Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, China (Project Nos. LZUMMM 2013001 and LZUMMM2014007), and China Scholarship Council (Project No. 201303070058).


  1. 1.
    Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Science 299, 1719 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Eerenstein, W., Mathu, N.D., Scott, J.F.: Nature 442, 759 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.-H., Salahuddin, S., Ramesh, R.: Phys. Rev. Lett. 107, 217202 (2011)CrossRefADSGoogle Scholar
  4. 4.
    Chang, C.M., Mani, B.K., Lisenkov, S., Ponomareva, I.: Phys. Rev. Lett. 114, 177205 (2015)CrossRefADSGoogle Scholar
  5. 5.
    Ederer, C., Spaldin, N.A.: Phys. Rev. B 71, 060401 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Bibes, M., Barthélémy, A.: Nat. Mater. 7, 425 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Tokunaga, M., Akaki, M., Ito, T., Miyahara, S., Miyake, A., Kuwahara, H., Furukawa, N.: Nat. Commun. 6, 5878 (2015)CrossRefADSGoogle Scholar
  8. 8.
    Fischer, P., Polomska, M., Sosnowska, I., Szymański, M.: J. Phys. C 13, 1931 (1980)CrossRefADSGoogle Scholar
  9. 9.
    Thomas, R., Scott, J.F., Bose, D.N., Katiyar, R.S.: J. Phys.: Condens. Matter. 22, 423201 (2010)ADSGoogle Scholar
  10. 10.
    Shi, X., Qin, Y., Chen, X.M.: Appl. Phys. Lett. 105, 192902 (2014)CrossRefADSGoogle Scholar
  11. 11.
    Bai, F.M., Wang, J.L., Wuttig, M., Li, J.F., Wang, N.G., Pyatakov, A.P., Zvezdin, A.K., Cross, L.E., Viehland, D.: Appl. Phys. Lett. 86, 032511 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Yu, B.F., Li, M.Y., Hu, Z.Q., Pei, L., Guo, D.Y., Zhao, X.Z., Dong, X. Appl. Phys. Lett. 93, 182909 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Quan, Z.C., Liu, W., Hu, H., Xu, S., Sebo, B., Fang, G.J., Li, M.Y., Zhao, X.Z.: J. Appl. Phys. 104, 084106 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Gupta, S., Tomar, M., James, A.R., Gupta, V.: J. Mater. Sci. 49, 5355 (2014)CrossRefADSGoogle Scholar
  15. 15.
    Xing, W.Y., Ma, Y., Ma, Z., Bai, Y.L., Chen, J.Y., Zhao, S.F.: Smart Mater. Struct. 23, 085030 (2014)CrossRefADSGoogle Scholar
  16. 16.
    Chang, H.W., Yuan, F.T., Tu, K.T., Lo, Y.C., Tu, S.Y., Wang, C.R., Yang, A.B., Tu, C.S., Jen, S.U., Chang, W.C.: J. Appl. Phys. 117, 17C734 (2015)CrossRefGoogle Scholar
  17. 17.
    El-Desoky, M.M., Mostafa, M.M., Ayoub, M.S., Ahmed, M.A.: J. Mater. Sci. - Mater. Electron. 5, 3291 (2015)Google Scholar
  18. 18.
    Deng, X.L., Huanga, J.M., Zhang, Y.Q., Cai, W., Fu, C.L.: Ferroelectrics 478, 11 (2015)CrossRefGoogle Scholar
  19. 19.
    Béa, H., Gajek, M., Bibes, M., Barthélémy, A.: J. Phys.: Condens. Matter. 20, 434221 (2008)Google Scholar
  20. 20.
    Gautam, A., Rangra, V.S.: Cryst. Res. Technol. 45, 953 (2010)CrossRefGoogle Scholar
  21. 21.
    Kothari, D., Reddy, V.R., Gupta, A., Phase, D.M., Lakshmi, N., Deshpande, S.K., Awasthi, A.M.: J. Phys.: Condens. Matter. 19, 136202 (2007)ADSGoogle Scholar
  22. 22.
    Lotey, G.S., Verma, N.K.: J. Nanopart. Res. 14, 742 (2012)CrossRefGoogle Scholar
  23. 23.
    Ramachandran, B., Ramachandra Rao, M.S.: Appl. Phys. Lett. 95, 142505 (2009)CrossRefADSGoogle Scholar
  24. 24.
    Yia, M.L., Wanga, C.B., Lia, L., Wang, J.M., Shena, Q., Zhang, L.M.: Appl. Surf. Sci. 344, 47 (2015)CrossRefADSGoogle Scholar
  25. 25.
    Wang, Y., Li, J., Chen, J.Y., Deng, Y.: J. Appl. Phys. 113, 103904 (2013)CrossRefADSGoogle Scholar
  26. 26.
    Xue, X., Tan, G.Q., Liu, W.L., Hao, H.F.: J. Alloys Compd. 604, 57 (2014)CrossRefGoogle Scholar
  27. 27.
    Eerenstein, W., Morrison, F.D., Dho, J., Blamire, M.G., Scott, J.F., Mathur, N.D.: Science. 307, 1203 (2005)CrossRefGoogle Scholar
  28. 28.
    Wang, J., Scholl, A., Zheng, H., Ogale, S.B., Viehland, D., Schlom, D.G., Spaldin, N.A., Rabe, K.M., Wuttig, M., Mohaddes, L., Neaton, J., Waghmare, U., Zhao, T., Ramesh, R.: Science 307, 1203 (2005)CrossRefGoogle Scholar
  29. 29.
    Jaffari, G.H., Samad, A., Iqbal, A.M, Hussain, S., Mumtaz, A., Awan, M.S., Siddique, M., Shah, S.I.: J. Alloys Compd. 644, 893 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Key Laboratory of Space Applied Physics and Chemistry (Ministry of Education), School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations