Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 10, pp 3121–3126 | Cite as

Magnetic and Magnetocaloric Properties of La0.65Ca0.35MnO3/La0.7Ca0.2Ba0.1MnO3 and La0.65Ca0.35MnO3/Pr0.5Sr0.5MnO3 Composite Manganites

  • E. Sellami-Jmal
  • Y. Regaieg
  • W. Cheikhrouhou-Koubaa
  • M. Koubaa
  • A. Cheikhrouhou
  • N. Njah
Original Paper

Abstract

La0.65Ca0.35MnO3/La0.7Ca0.2Ba0.1MnO3 (COMPI) and La0.65Ca0.35MnO3/Pr0.5Sr0.5MnO3 (COMPII) composite manganites were prepared using a conventional ceramic double-sintering process. The microstructural, magnetic and magnetocaloric properties of the composites were investigated using scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). X-ray diffraction analysis using Rietveld refinement shows that the starting La0.65Ca0.35MnO3, La0.7Ca0.2Ba0.1MnO3 and Pr0.5Sr0.5MnO3 manganites are single phases and crystallize in the orthorhombic system with a Pbnm space group. Magnetization measurements versus temperature for each composite reveal two magnetic transition temperatures associated to both manganites, which induces an enlargement of the magnetic entropy change peak. A better relative cooling power (RCP) value of 308 J kg−1 around 280 K is obtained for COMPI and is about 75 % of that observed in pure Gd, which makes our composite a potential candidate for magnetic refrigeration around room temperature

Keywords

Composites Manganites X-ray diffraction Electron microscopy Magnetocaloric effect 

Notes

Acknowledgments

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

References

  1. 1.
    Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Science 264, 413–415 (1994)CrossRefADSGoogle Scholar
  2. 2.
    Zimm, C., Jastrab, A., Sternberg, A., Pecharsky, V.K., Gschneider, K.A., Osbore, Jr., M., Anderson, I.: Adv. Cryog. Eng. 43, 1759–1966 (1998)Google Scholar
  3. 3.
    Salamon, M.B., Jaime, M.: Rev. Mod. Phys 73, 583–628 (2001)CrossRefADSGoogle Scholar
  4. 4.
    Tishin, A.M., Spichkin, Y.I.: The magnetocaloric effect and its applications. Institute of Physics Publishing, Bristol (2003)Google Scholar
  5. 5.
    Casanova, F., Batlle, X., Labarta, A.: Phys. Rev. B 66, 212402–212405 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Tegus, O., Brück, E., Buschow, K.H.J., de Boer, F.R.: Nature 415, 150 (2002)CrossRefADSGoogle Scholar
  7. 7.
    Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chen, Z.: Int. J. Refrig. 26, 622 (2003)CrossRefGoogle Scholar
  8. 8.
    Phan, M.H., Yu, S.C. J. Magn. Magn. Mater. 308, 325 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Schiffer, P.E., Ramirez, A.P., Bao, W., Cheong, S.W.: Phys. Rev. Lett. 75, 3336 (1995)CrossRefADSGoogle Scholar
  10. 10.
    Zhensheng, P.: J. Rare Earths 22, 232 (2004)Google Scholar
  11. 11.
    Koubaa, M., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Haghiri-Gosnet, A.M.: Phys. B 403, 2477 (2008)CrossRefADSGoogle Scholar
  12. 12.
    Tang, W., Lu, W., Luo, X., Wang, B., Zhu, X., Song, W., Yang, Z., Sun, Y.: J. Magn. Magn. Mater. 322, 2360 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Regaieg, Y., Ayadi, F., Monnier, J., Reguer, S., Koubaa, M., Cheikhrouhou, A., Nowak, S., Sicard, L., Ammar-Merah, S.: Mater. Res. Express 1, 046105 (2014)CrossRefADSGoogle Scholar
  14. 14.
    Mbarek, H., M’nasri, R., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A.: Phys. Status Solidi A 211, 975–979 (2014)CrossRefGoogle Scholar
  15. 15.
    Marzouki-Ajmi, A., Cheikrouhou-Koubaa, W., Cheikhrouhou, A.: Supercond, J. Nov. Magn (2015). doi: 10.1007/s10948-014-2805-8 Google Scholar
  16. 16.
    Jian, W.: J. Magn. Magn. Mater. 476, 859–863 (2009)Google Scholar
  17. 17.
    Panwar, N., Coondoo, I., Agarwal, S.K.: J. Mater. Lett. 64, 2638–2640 (2010)CrossRefGoogle Scholar
  18. 18.
    Jha, R., Kumar Singh, S., Kumar, A., Awana, V.P.S.: J. Magn. Magn. Mater. 324, 2849–2853 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Rietveld, H.M.: J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Carvajal, J.: Phys. B 192, 55 (1993)CrossRefADSGoogle Scholar
  21. 21.
    Pekala, M., Pekala, K., Drozd, V., Staszkiewicz, K., Fagnard, J.-F., Vanderbemden, P.: J. Appl. Phys. 023906, 112 (2012)Google Scholar
  22. 22.
    Banerjee, S.K.: Phys. Lett. 12, 16 (1964)CrossRefADSGoogle Scholar
  23. 23.
    McMichael, R.D., Ritter, J.J., Shull, R.D.: J. Appl. Phys. 73, 6946 (1993)CrossRefADSGoogle Scholar
  24. 24.
    Zhang, P., Yang, H., Zhang, S., Ge, H., Panm, M.: J. Magn. Magn. mater. 334, 16 (2013)CrossRefADSGoogle Scholar
  25. 25.
    Tang, W., Lu, W.J., Luo, X., Wanga, B.S., Zhu, X.B., Song, W.H., Yang, Z.R., Sun, Y.P.: Phys. B 405, 2733 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Gschneidner, K.A., Pecharsky, V.K.: Annu. Rev. Mater. Sci. 30, 387 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. Sellami-Jmal
    • 1
  • Y. Regaieg
    • 1
    • 2
  • W. Cheikhrouhou-Koubaa
    • 1
    • 3
  • M. Koubaa
    • 1
  • A. Cheikhrouhou
    • 1
  • N. Njah
    • 4
  1. 1.Laboratoire de Physique des Matériaux, Faculté des Sciences de SfaxSfax UniversitySfaxTunisia
  2. 2.ITODYSUniversité Paris Diderot, Sorbonne Paris Cité CNRS UMR 7086ParisFrance
  3. 3.Centre de Recherche en InformatiqueMultimédia et Traitement Numérique des Données de SfaxSakiet EzzitTunisia
  4. 4.Laboratoire Géoressources, Environnement Matériaux et Changements globaux, Faculté des Sciences de SfaxSfax UniversitySfaxTunisia

Personalised recommendations