Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 10, pp 3099–3104 | Cite as

First-Principles Study of Structural, Electronic, Magnetic and Half-Metallic Properties of the Heusler Alloys Ti2ZAl (Z = Co, Fe, Mn)

  • F. Dahmane
  • S. Benalia
  • L. Djoudi
  • A. Tadjer
  • R. Khenata
  • B. Doumi
  • H. Aourag
Original Paper

Abstract

Using the first-principles calculations based on density functional theory within the generalized gradient approximation (GGA), we investigate the structural, electronic and magnetic properties of the Ti2ZAl (Z = Co, Fe, Mn) alloys with the CuHg2Ti-type structure. The optimized equilibrium lattice constants were found to be 6.08 Å for Ti2CoAl, 6.07 Å for Ti2FeAl and 6.16 Å for Ti2MnAl. The Ti2ZAl (Z = Co, Fe, Mn) alloys are found to be half-metallic ferromagnets. The total magnetic moment of Ti2ZAl (Z = Co, Fe, Mn) is 2, 1 and 0 µ B, respectively, which is in agreement with the Slater–Pauling rule M tot=Z tot- 18. The Ti2ZAl (Z = Co, Fe, Mn) have a band gap of 0.64745, 0.57795 and 0.39327 eV, respectively.

Keywords

Heusler alloy Magnetic properties Half metallicity First-principles calculations 

References

  1. 1.
    Madhumita Halder, K.G., Suresh, M.D., Mukadam, S.M., Yusuf: J. Magn. Magn. Mater. 374, 75–79 (2015)Google Scholar
  2. 2.
    Galanakis, I., Ležaic, M., Bihlmayer, G., Blügel, S.: Phys. Rev. B: Condens. Matter 71, 214431 (2005)Google Scholar
  3. 3.
    Birsan, A.: J. Alloys. Compnd. 598, 230–235 (2014)Google Scholar
  4. 4.
    Graf, T., Felser, C., Parkin, S.S.P.: Progress Sol. St. Chem. 39, 1 (2011)Google Scholar
  5. 5.
    Gupta, D.C., Bhat, I.H.: J. Magn. Magn. Mater. 374, 209–213 (2015)Google Scholar
  6. 6.
    Umamaheswari, R., Yogeswari, M., Kalpana, G.: J. Magn. Magn. Mater. 350, 167–173 (2014)Google Scholar
  7. 7.
    De Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 20, 2024 (1983)Google Scholar
  8. 8.
    Bayar, E., Kervan, N.: Selc-uk Kervan and 2945–2948. J. Magn. Magn. Mater., 323 (2011)Google Scholar
  9. 9.
    Zhu, Z.H., Yan, X.H.: J. Appl. Phys. 106, 023713 (2009)Google Scholar
  10. 10.
    Kobayashi, K.L., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Nature 395, 677 (1998)Google Scholar
  11. 11.
    Nourmohammadi, A., Abolhasani, M.R.: Solid State Commun. 150, 1501 (2010)Google Scholar
  12. 12.
    Wang, W.Z., Wei, X.P.: Comput. Mater. Sci. 50, 2253 (2011)Google Scholar
  13. 13.
    Dho, J., Ki, S., Gubkin, A.F., Park, J.M.S., Sherstobitov, E.A.: Solid State Commun. 150, 86 (2010)Google Scholar
  14. 14.
    Soeya, S., Hayakawa, J., Takahashi, H., Ito, K., Yamamoto, C., Kida, A., Asano, H., Matsui, M.: Appl. Phys. Lett. 80, 823 (2002)Google Scholar
  15. 15.
    Huang, H.M., Luo, S.J., Yao, K.L.: J. Magn. Magn. Mater. 324, 2560–2564 (2012)Google Scholar
  16. 16.
    Singh, D., Waves, P.: Pseudo-potentials and the LAPW method. Kluwer Academic Publishers, Boston, Dortrecht, London (1994)Google Scholar
  17. 17.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Hvasnicka, D., Luitz, J.: WIEN2k, An augmented plane wave plocal orbitals program for calculating crystal properties. Karlheinz Schwarz. Technische Universit Wien, Austria (2001)Google Scholar
  18. 18.
    Perdew, J.P., Burke, K., Wang, Y. Phys. Rev. B 54, 16533 (1996)Google Scholar
  19. 19.
    Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
  20. 20.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. USA 30, 244 (1944)Google Scholar
  21. 21.
    Luo, H.Z., Zhu, Z.Y., Liu, G.D., Xu, S.F., Wu, G.H., Liu, H.Y., Qu, J.P., Li, Y.X., Magn, J.: Magn. Mater. 320, 421 (2008)Google Scholar
  22. 22.
    Liping, M., Yongfan, S., Yu, H.: J. Magn. Magn. Mater. 369, 205–210 (2014)Google Scholar
  23. 23.
    Nan, Z., Yingjiu, J.: J. Magn. Magn. Mater. 324, 3099–3104 (2012)Google Scholar
  24. 24.
    Ahmadian, F.: J. Alloys. Compnd. 576, 279–284 (2013)Google Scholar
  25. 25.
    Fang, C.M., De Wijs, G.A., De Groot, R.A.: J. Appl. Phys. 91, 8340 (2002)Google Scholar
  26. 26.
    Liu, G.D., Dai, X.F., Liu, H.Y., Chen, J.L., Li, Y.X., Xiao, G., et al.: Phys. Rev. B 77, 014424 (2008)Google Scholar
  27. 27.
    Galanakis, I., Mavropoulos, Ph., Dederichs, P.H.: J. Phys.D: Appl. Phys. 39, 765 (2006)CrossRefADSGoogle Scholar
  28. 28.
    Skaftouros, S., Özdogan, K., Galanakis, I.: Phys. Rev. B 87, 024420 (2013)Google Scholar
  29. 29.
    Ahmadian, F., Salary, A.: Intermetallics 46, 243–249 (2014)Google Scholar
  30. 30.
    Wei, X.-P., Deng, J.-B., Mao, G.-Y., Chu, S.-B., Hu, X.-R.: Intermetallics 29, 86 (2012)Google Scholar
  31. 31.
    Fang, Q.-L., Zhao, X.-M., Zhang, J.-M., Xu, K.-W.: Thin Solid Films 558, 241–246 (2014)Google Scholar
  32. 32.
    Slater, J. C.: Phys. Rev. 49, 931 (1936)Google Scholar
  33. 33.
    Pauling, L.: Phs. Rev. 54, 899 (1938)Google Scholar
  34. 34.
    Galanakis, I., Dederichs, P. H., Papanikolaou, N.: Phys. Rev. B 66, 134428 (2002)Google Scholar
  35. 35.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B 66, 174429 (2002)Google Scholar
  36. 36.
    Fang, Q.-L., Zhang, J.-M., Xu, K.-W.: J. Magn. Magn. Mater. 349, 104–108 (2014)Google Scholar
  37. 37.
    Chen, Y., Wu, B., Yuan, H., Feng, Y., Chen, H.: J. Solid State Chem. 221, 311–317 (2015)Google Scholar
  38. 38.
    Wei, X.P., Deng, J.B., Mao, G.Y., Chu, S.B., Hu, X.R.: Intermetallics 29, 86–91 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • F. Dahmane
    • 1
    • 2
  • S. Benalia
    • 2
    • 3
  • L. Djoudi
    • 2
    • 3
  • A. Tadjer
    • 1
  • R. Khenata
    • 4
  • B. Doumi
    • 1
  • H. Aourag
    • 5
  1. 1.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentUniversity of Sidi Bel-AbbesSidi Bel-AbbesAlgeria
  2. 2.Département de SM, Institue des sciences et des technologiesCentre universitaire de TissemsiltTissemsiltAlgeria
  3. 3.Laboratoire des Matériaux Magnétiques, Faculté des SciencesUniversité Djillali Liabès de Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  4. 4.Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de TechnologieUniversité de MascaraMascaraAlgeria
  5. 5.Laboratoire Étude et Prédiction de Matériaux, URMER, Département de Physique, Faculté des SciencesUniversité A. Belkaid, TlemcenTlemcenAlgeria

Personalised recommendations