Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 8, pp 2393–2400 | Cite as

Superconducting Fluctuations and Excess Conductivity Analysis of Te-Substituted TlSr2(Ca1−x Te x )Cu2O7−δ

  • Annas Al-Sharabi
  • R. Abd-Shukor
Original Paper


Samples with nominal starting compositions TlSr2(Ca1−x Te x )Cu2O7−δ (x = 0.05–0.30) were prepared by the solid-state reaction method and studied by powder X-ray diffraction and electrical resistance measurements. The purpose of this work was to determine the valence state of Te in the TlSr2CaCu2O7−δ (Tl-1212) phase. It is also to determine the dimension of fluctuation-induced conductivity λ, and the superconducting fluctuations and excess conductivity using the Aslamazov–Larkin (AL) theory. The Lawrence–Donaich (LD) theory was used to calculate the coherence length ξ c(0), interlayer coupling J, and anisotropy γ = (ξ ab(0)/ ξ c(0)). X-ray powder diffraction patterns indicated that the samples were dominantly Tl-1212 phase. Temperature-dependent resistance measurements showed metallic normal-state behavior for all samples. The onset transition temperature, T c onset, was between 32 K (x = 0.05) and 61 K (x = 0.25). The valence of Te in Tl-1212 is suggested to be Te6+ from the analysis of the highest T c in the x = 0.25 sample. Excess conductivity analyses showed that Te substitution induced 2D-to-3D conductivity transition with the highest transition temperature, T 2D−3D observed for x = 0.25. The calculations based on Lawrence–Doniach model showed the shortest coherence length, ξ c(0), and highest anisotropy (γ = 10.24) for the x = 0.25 sample.


Tl-1212 Solid-state reaction Excess conductivity 



This work has been supported by the Ministry of Education of Malaysia under grant no. FRGS/2/2013/SG02/UKM/01/1 and Universiti Kebangsaan Malaysia under grant no UKM-DIP-2014-022.


  1. 1.
    Martin, C., Provost, J., Bourgault, D., Domenses, D., Michel, C., Herviu, M., Raveau, B.: Phys. C 157, 460 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Sheng, Z.Z., Li, Y.F., Pederson, D.O.: Solid State Comm. 80, 913 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Subramanian, M.A., Torardi, C.C., Gopalakrishnan, J., Gai, P.L., Calabrese, J.C., Askew, T.R., Flippen, R.B., Sleight, A.W.: Science 242, 249 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Lee, W.H., Huang, B.C.: Phys. C 189(1-2), 114 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Sheng, Z.Z., Sheng, L., Fei, X., Hermann, A.M.: Phys. Rev. B 39, 2918 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Abd-Shukor, R., Tee, K.S.: Mat. Sci. Lett. 17(2), 103 (1997)CrossRefGoogle Scholar
  7. 7.
    Li, S., Greenblatt, M.: Phys. C 157(2), 365 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Yahya, A.K., Abdullah, W.F., Jumali, M.H., Imad, H., Abd-Shukor, R.: Ceram Intern. 30(7), 1591 (2004)CrossRefGoogle Scholar
  9. 9.
    Abd-Shukor, R., Tiew, C.H.: Mat Sci: Mat. Elec. 10(2), 109 (1999)Google Scholar
  10. 10.
    Hamadneh, I., Kuan, Y.W., Hui, L.T., Abd-Shukor, R.: Mat. Lett. 60(6), 734 (2006)CrossRefGoogle Scholar
  11. 11.
    Al-Sharabi, A., Abd-Shukor, R.: Inter. J. Electrochem. Sci 8, 7825 (2013)Google Scholar
  12. 12.
    Han, S., Bryntse, I., Axnas, J., Zhao, B.R.: Phys. C 408, 679 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Khurram, A.A., Khan, N.A., Mumtaz, M.: Phys. C 469, 279 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Aswal, D.K., Singh, A., Sen, S., Kaur, M., Viswandham, C.S., Goswami, G.L., Gupta, S.K.: J. Phys. Chem. Sol. 63, 1797 (2002)CrossRefGoogle Scholar
  15. 15.
    Islam, M.R., Pramanik, M.H.A.: Phys. Rev. B 55(10), 6621 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Ismail, S., Yahya, A.K., Nawazish, A.K.: Ceram. Intern. 39, S257 (2013)CrossRefGoogle Scholar
  17. 17.
    Mohammed, N.H.: Phys. C 485, 95 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Sharma, S.V., Sinha, G., Nath, T.K., Chakroborty, S., Majumdar, A.K.: Phys. C 242, 351 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Sato, T., Nakane, H., Mori, N., Yoshizawa, S.: Phys. C 357–360, 244 (2001)CrossRefGoogle Scholar
  20. 20.
    Ali Yusuf, A., Yahya, A.K., Nawazish, A.K., Md. Salleh, F., Marsom, E., Huda, N.: Phys. C 471, 363 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Ahmad, N.H., Khan, N.A., Yahya, A.K.: J. Alloy Compd. 492(1-2), 473 (2010)CrossRefGoogle Scholar
  22. 22.
    Khan, N.A., Mumtaz, A.: Phys. B 404(13), 2772 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Khan, N.A., Hassan, N., Irfan, M., Firdous, T.: Phys. B 405(6), 1541 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Al-Sharabi, A., Abd-Shukor, R.: J. Alloy Compd. 615, 363 (2014)CrossRefGoogle Scholar
  25. 25.
    Huda, N., Yahya, A.K., Abdullah, W.F.: AIP Conf. Proc. 1017, 114 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Al-Sharabi, A., Abd-Shukor, R.: Ceram. Intern. 40, 9383 (2014)CrossRefGoogle Scholar
  27. 27.
    Al-Sharabi, A., Abd-Shukor, R.: AIP Conf. Proc. 1571, 102 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Huda, N., Yahya, A.K.: Mat. Res. Innov. 13(3), 406 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Applied PhysicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Department of Physics, Faculty of Applied SciencesThamar UniversityThamarRepublic of Yemen

Personalised recommendations