Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 8, pp 2345–2354 | Cite as

A Finite Element Simulation Tool for Predicting Hysteresis Losses in Superconductors Using an H-Oriented Formulation with Cohomology Basis Functions

  • Valtteri Lahtinen
  • Antti Stenvall
  • Frédéric Sirois
  • Matti Pellikka
Original Paper

Abstract

Currently, modelling hysteresis losses in superconductors is most often based on the H-formulation of the eddy current model (ECM) solved using the finite element method (FEM). In the H-formulation, the problem is expressed using the magnetic field intensity H and discretized using edge elements in the whole domain. Even though this approach is well established, it uses unnecessary degrees of freedom (DOFs) and introduces modelling error such as currents flowing in air regions due to finite air resistivity. In this paper, we present a modelling tool utilizing another H-oriented formulation of the ECM, making use of cohomology of the air regions. We constrain the net currents through the conductors by fixing the DOFs related to the so-called cohomology basis functions. As air regions will be truly non-conducting, DOFs and running times of these nonlinear simulations are reduced significantly as compared to the classical H-formulation. This fact is demonstrated through numerical simulations.

Keywords

Superconductors Hysteresis losses Finite element method Cohomology 

Notes

Acknowledgments

This research was partially supported by The Academy of Finland project #250652. Most of the work leading to this research was conducted during the research exchange period of Valtteri Lahtinen 19.8.2013–15.2.2014 at École Polytechnique de Montréal, Montréal, Canada.

References

  1. 1.
    Bruzzone, P.: Physica C 401, 7 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Grilli, F., Pardo, E., Stenvall, A., Nguyen, D.N., Yuan, W., Gömöry F.: IEEE Trans. Appl. Supercond. 24, 8200433 (2014)Google Scholar
  3. 3.
    Lahtinen, V., Stenvall, A.: J. Supercond. Nov. Magn. 27(2014), 641 (2014)CrossRefGoogle Scholar
  4. 4.
    Brambilla, R., Grilli, F., Martini, L.: Supercond. Sci. Techol. 20, 16 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Grilli, F., Brambilla, R., Sirois, F., Stenvall, A., Memiaghe, S.: Cryogenics 53, 142 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Hong, Z., Campbell, A.M., Coombs, T.A.: Supercond. Sci. Techol. 19, 1246 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Lahtinen, V., Lyly, M., Stenvall, A., Tarhasaari, T.: Supercond. Sci. Technol. 25, 115001 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Zhang, M., Coombs, T.A.: Supercond. Sci. Techol. 25, 015009 (2012)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Comsol Multiphysics is a commercial FEM program. http://www.comsol.com
  10. 10.
    Bossavit, A.: IEEE Proc. 135, 493 (1988)CrossRefGoogle Scholar
  11. 11.
    Bíró, O.: Comput. Method Appl. M. 169, 391 (1999)CrossRefMATHGoogle Scholar
  12. 12.
    Frankel, T.: The geometry of physics: An introduction third edition Cambridge. Cambridge University Press, UK (2012)Google Scholar
  13. 13.
    Kotiuga, P.R.: J. Appl. Phys. 61, 3916 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Henrotte, F., Hameyer, K.: IEEE Trans. Magn. 39(2003), 1167 (2003)ADSCrossRefMATHGoogle Scholar
  15. 15.
    Kettunen, L., Forsman, K., Bossavit, A.: Int. J. Numer. Meth. Eng. 41, 935 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pellikka, M., Suuriniemi, S., Kettunen, L., Geuzaine, C.: SIAM J. Sci. Comput. 35, B1195 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Stenvall, A., Lahtinen, V., Lyly, M.: Supercond. Sci. Technol. 27, 104004 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Gross, P.W., Kotiuga, P.R.: Electromagnetic Theory and Computation: A Topological Approach. Cambridge University Press, New York (2004)CrossRefMATHGoogle Scholar
  19. 19.
    Nash, C., Sen, S.: Topology and Geometry for Physicists. Academic Press, Orlando (1987)Google Scholar
  20. 20.
    Foldes, S.: Fundamental Structures of Algebra and Discrete Mathematics. Wiley-Interscience, USA (1994)CrossRefGoogle Scholar
  21. 21.
    Pellikka, M., Tarhasaari, T., Suuriniemi, S., Kettunen, L.: J. Comp. Appl. Math 246, 225Google Scholar
  22. 22.
    Geuzaine, C., Remacle, J.F.: Int. J. Numer. Meth. Eng. 79, 1309 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: ACM T. Math. Software 31, 363 (2005). SUNDIALS software package is available online at: https://computation.llnl.gov/casc/sundials/ MathSciNetCrossRefGoogle Scholar
  24. 24.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. SIAM, Philadelphia, PA (1996)MATHGoogle Scholar
  25. 25.
    Ghosh, A.K.: Physica C. 401, 15 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Motaman, A., et al.: J. Supercond. Nov. Magn. 27, 1643 (2014)CrossRefGoogle Scholar
  27. 27.
    Pardo, E., Šouc, J., Kovač, J.: Supercond. Sci. Technol. 25, 035–003 (2012)Google Scholar
  28. 28.
    Norris, W.T.: J. Phys. D: Appl. Phys. 3, 489 (1967)ADSCrossRefGoogle Scholar
  29. 29.
    Lyly, M., Lahtinen, V., Stenvall, A., Tarhasaari, T., Mikkonen, R.: Approaches for tree - co-tree gauged Tφ formulated eddy current problem in superconductor hysteresis loss simulations. IEEE Trans. Appl. Supercond. 23 (8200909) (2013)Google Scholar
  30. 30.
    Kurz, S., Auchmann, B.: Fast Boundary Element Methods in Engineering and Industrial Applications: Lecture notes in Applied and Computational Mechanics, vol. 63, pp 1–62 (2012)Google Scholar
  31. 31.
    Kettunen, L., Forsman, K., Bossavit, A.: IEEE Trans. Magn. 34(1998), 2551 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    Stenvall, A., Tarhasaari, T.: Supercond. Sci. Technol. 23, 075010 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Valtteri Lahtinen
    • 1
    • 2
  • Antti Stenvall
    • 1
  • Frédéric Sirois
    • 2
  • Matti Pellikka
    • 1
    • 3
  1. 1.ElectromagneticsTampere University of TechnologyTampereFinland
  2. 2.Department of Electrical EngineeringÉcole Polytechnique de MontréalMontréalCanada
  3. 3.Microsoft Devices GroupTampereFinland

Personalised recommendations