Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 8, pp 2465–2472 | Cite as

On the Room Temperature Ferromagnetic and Ferroelectric Properties of Pb(Fe1/2Nb1/2)O3

  • Shidaling Matteppanavar
  • Sudhindra Rayaprol
  • A. V. Anupama
  • Balaram Sahoo
  • Basavaraj Angadi
Original Paper


We report the origin of room temperature (RT) ferromagnetic and ferroelectric properties of Pb(Fe1/2Nb1/2)O3 (PFN) ceramic sample prepared by modified solid-state reaction synthesis by a single-step method, based on X-ray diffraction (XRD), neutron diffraction (ND), Mössbauer spectroscopy and electron paramagnetic resonance (EPR) spectroscopy results. Formation of single-phase monoclinic PFN ceramic with Cm space group was confirmed by XRD and ND at RT. The morphology studied by scanning electron microscopy (SEM) confirmed uniform microstructure of the sample with average grain size of ∼2 μm. The ND, Mössbauer spectroscopy, MH loop and EPR studies were carried out to confirm the existence of weak ferromagnetism at RT. A clear opening of hysteresis (MH) loop is evidenced as the existence of weak ferromagnetism at RT. EPR spectrum clearly shows the ferromagnetism through a good resonance signal. The symmetric EPR line shape with g = 1.9895 observed in PFN sample was identified to be due to Fe 3+ ions. Mössbauer spectroscopy at RT shows superparamagnetic behaviour with presence of Fe in 3 + valence state. Ferroelectric PE loops on PFN at RT confirm the existing ferroelectric ordering. Our observation is in agreement with literature, and it supports that the origin of ferromagnetism and ferroelectricity is isolated, i.e. from different regions in the sample. Our results do not support the multiferroic nature of PFN at RT.


Pb(Fe1/2Nb1/2)O3 Neutron diffraction Mössbauer effect Magnetization 



The authors (SM and BA) are thankful to UGC DAE CSR Mumbai Center Experimental Facilities and student fellowship in CSR M 159 project. Also, the authors are thankfullto V R Reddy and S K Upadhyay of UGC DAE CSR Indore Center for the ferroelectric (PE) loop measurement and discussions.


  1. 1.
    Smolenskii, G.A., Agranovskia, A.I., Popov, S.N., Isupov V.A.: Sov. Phys. Tech. Phys. 3, 1981 (1958)Google Scholar
  2. 2.
    Goto, T., Yamasaki, Y., Watanabe, H., Kimura, T., Tokura, Y.: Anticorrelation between ferromagnetism and ferroelectricity in perovskite manganites. Phys. Rev. B 72, 220403(R) (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Naito, Y., Sato, K., Yasui, Y., Kobayashi, Y., Sato, M.: Ferroelectric transition induced by the incommensurate magnetic ordering in LiCuVO4. J. Phys. Soc. Jpn. 76, 023708 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123—R152 (2005)CrossRefGoogle Scholar
  5. 5.
    Singh, S.P., Pandey, D., Yoon, S., Baik, S., Shin, N.: Evidence for monoclinic crystal structure and negative thermal expansion below magnetic transition temperature in Pb(Fe1/2Nb1/2)O3. Appl. Phys. Lett. 90, 242915 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Levstik, A., Bobnar, V., Filipič, C., Holc, J., Kosec, M., Blinc, R., Trontelj, Z., Jagličić, Z.: Magnetoelectric relaxor. Appl. Phys. Lett. 91, 012905 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Kumar, A., Rivera, I., Katiyar, R.S., Scott, J.F.: Multiferroic Pb(Fe0.66 W 0.33)0.80Ti0.20O3 thin films: a room-temperature relaxor ferroelectric and weak ferromagnetic. Appl. Phys. Lett. 92, 132913 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Bokov, V.A., Myl’nikova, I.E., Smolenskii, G.A.: Ferroelectric antiferromagnetics. Sov. Phys. JETP 15, 447 (1962)Google Scholar
  9. 9.
    Matteppanavar, S., Angadi, B., Rayaprol, S.: Low temperature magnetic studies on PbFe0.5Nb0.5O3 multiferroic. Physica B 448, 229–232 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Bonny, V., Bonin, M., Sciau, Ph., Schenk, K.J., Chapuis, G.: Phase transitions in disordered lead iron niobate: X-ray and synchrotron radiation diffraction experiments. Solid State Commun. 102, 347–352 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Lampis, N., Sciau Ph., Lehmann, A.G.: Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Nb0.5O3. J. Phys.: Condens. Matter 11, 3489 (1999)ADSGoogle Scholar
  12. 12.
    Majumder, S.B., Bhattacharyya, S., Katiyar, R.S., Manivannan, A., Dutta, P., Seehra, M.S.: Dielectric and magnetic properties of sol-gel-derived lead iron niobate ceramics. J. Appl. Phys. 99, 024108 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Blinc, R., Cevc, P., Zorko, A., Holc, J., Kosec, M.: Electron paramagnetic resonance of magnetoelectric Pb(Fe1/2Nb1/2)O3. J. Appl. Phys. 101, 033901 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Fraygola, B., Frizon, N., Nasscimento, W.J., Coelho, A.A., Garcia, D., Eiras, J.A.: Room temperature multiferroic behavior in Pb(Fe1/2Nb1/2)O3 ceramics. Ferroelectr. 470, 221–226 (2014)CrossRefGoogle Scholar
  15. 15.
    Brand, R.A.: Nucl. Instrum. Methods B 28, 398 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    Young, R.Y.: The Rietveld method. Oxford University Press, Oxford (1996)Google Scholar
  17. 17.
    Carbonin, S., Martignago, F., Menegazzo, G., Negro, A.: X-ray single-crystal study of spinels: in situ heating. Phys. Chem. Miner. 29, 503–514 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Pietzrak, J., Maryanowska, A., Leciejewicz, J.: Magnetic ordering in Pb(Fe0.5Nb0.5)O3 at 4.2 K. Phys. Stat. Solid A 65, K79–K82 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    Ivanov, S., Tellgren, R., Rundlof, H., Thomas, N.W., Ananta, S.: Investigation of the structure of the relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 by neutron powder diffraction. J. Phys.: Condens. Mater. 12, 2393–400 (2000)ADSGoogle Scholar
  20. 20.
    Raevskii, I.P., Sarychev, Bryugeman, S.A., Reznichenko, L.A., Shilkina, L.A., Razumovskaya, O.N., Nikolaev, V.S., Vyshatko, N.P., Salak, A.N.: Study of cation ordering and magnetic phase transitions in ternary Fe-containing perovskite oxides by Mössbauer spectroscopy. Crystallogr. Rep. 47(6), 1012–1015 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Chillal, S., Thede, M., Litterst, F.J., Gvasaliya, S.N., Shaplygina, T.A., Lushnikov, S.G., Zheludev, A.: Microscopic coexistence of antiferromagnetic and spin-glass states. Phys. Rev. B 87, 220403(R) (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Chang, H., Guo, Y.-q., Liang, J.-k., Rao, G.-H.: Magnetic ordering and irreversible magnetization between ZFC and FC states in RCo5Ga7 compounds. J. Magn. Magn. Matter. 278, 306–310 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Havlicek, R., Vejpravova, J.P., Bochenek, D.: Structure and magnetic properties of perovskite-like multiferroic PbFe0.5Nb0.5O3. J. Phys. Conf. Ser. 200, 0120581–3 (2010)CrossRefGoogle Scholar
  24. 24.
    Vincent, E., Dupuis, V., Alba, M., Hammann, J., Bouchaud, J.-P.: Aging phenomena in spin-glass and ferromagnetic phases: domain growth and wall dynamics. Europhys. Lett. 50, 674–680 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Maryanowska, A., Pietzrak, J.: Critical-point anomalies in the EPR linewidth of Pb (Fe0.5Nb0.5)O3. Phys. Status Solidi A 68, K185 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    Alvarez, G., Font, R., Portelles, J., Valenzuela, R., Zamorano, R.: Signature of weak ferromagnetism by electron paramagnetic resonance in the ferroelectromagnet Pb(Fe1/2Nb1/2)O3. Physica B 384, 322 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Blinc, R., Laguta, V.V., Zalar, B., Zupancic, B., Itoh, M.: 17O and 93Nb NMR investigation of magnetoelectric effect in Pb(Fe1/2Nb1/2)O3. J. Appl. Phys. 104, 084105 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Laguta, V.V., Rosa, J., Jastrabik, L., Blinc, R., Cevc, P., Zalar, B., Remskar, M., Raevskaya, S.I., Raevski, I.P.: 93Nb NMR and Fe 3+ EPR study of local magnetic properties of magnetoelectric Pb(Fe1/2Nb1/2)O3. Mater. Res. Bull. 45, 1720 (2010)CrossRefGoogle Scholar
  29. 29.
    Yang, Y., Liu, J.-M., Huang, H.B., Zou, W.Q., Liu, Z.G.: Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2 Nb1/2)O3 single crystals. Phys. Rev. B 70, 132101 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, J.T., Zhang, C., Shen, Z.X., Feng, Y.: Magnetic field effect on dielectric properties of Pb(Fe1/2 Nb1/2)O3 single crystal. Ceram. Int. 30, 1627 (2004)CrossRefGoogle Scholar
  31. 31.
    Yang, Y., Zhang, S.T., Huang, H.B., Chen, Y.F., Liu, Z.G., Liu, J.-M.: Microstructural characterizations of ferroelectromagnet lead iron niobate crystals. Mater. Lett. 59, 1767 (2005)CrossRefGoogle Scholar
  32. 32.
    Lee, Y.-H., Wu, J.-M., Chueh, Y.-l., Chou, L.-J.: Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current. Appl. Phys. Lett. 87, 172901 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shidaling Matteppanavar
    • 1
  • Sudhindra Rayaprol
    • 2
  • A. V. Anupama
    • 3
  • Balaram Sahoo
    • 3
  • Basavaraj Angadi
    • 1
  1. 1.Department of Physics, Jnana Bharathi CampusBangalore UniversityBangaloreIndia
  2. 2.UGC-DAE-Consortium for Scientific ResearchMumbai Centre, BARC CampusMumbai –India
  3. 3.Materials Research CentreIndian Institute of Science, BangaloreBangaloreIndia

Personalised recommendations