Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 8, pp 2501–2504 | Cite as

Ab Initio, Mean Field and High-Temperature Series Expansion Calculation Study of Structural Stability and Magnetism of MnHg

  • R. Masrour
  • E. K. Hlil
  • M. Hamedoun
  • A. Benyoussef
  • O. Mounkachi
  • H. El Moussaoui
Original Paper


The self-consistent ab initio calculations, based on density functional theory (DFT) approach and using a full-potential linear augmented plane wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the MnHg compound. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn atoms. Magnetic moment considered to lie along (001) axis is computed. The antiferromagnetic and ferromagnetic energies of MnHg systems are obtained. Obtained data from ab initio calculations are used as input for the high-temperature series expansion (HTSE) calculations to compute other magnetic parameters. The exchange interactions between the magnetic atoms Mn–Mn in MnHg are given using the mean field theory. The HTSEs of the magnetic susceptibility of the magnetic moments in MnHg (m Mn) through the Ising model are given up to tenth order series in (x=J(Mn–Mn) / k B T). The Néel temperature (T N (K)) is obtained by HTSEs applied to the magnetic susceptibility series combined with the Padé approximant method. The critical exponent (γ) associated with the magnetic susceptibility is deduced as well.


MnHg compound Electronic and magnetic structure Magnetic moment Ab initio calculations 


  1. 1.
    Verhoef, R., De Boer, F.R., Franse, J.J.M., Denissen, C.J.M., Jacobs, T.H., Buschow, K.H.J.: J. Magn. Magn. Mater. 80, 41 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Verhoef, R., Radwafiski, R.J., Franse, J.J.M.: J. Magn. Magn. Mater. 89, 176 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    Ravindran, P., Kjekshus, A., Fjellvåg, H., James, P., Nordström, L., Johansson, B., Eriksson, O.: Phys. Rev. B 63, 144409 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Fujii, S., Ishida, S., Asano, S.: J. Phys. Soc. Jpn. 61, 709–713 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    Masrour, R., Hlil, E.K., Hamedoun, M., Benyoussef, A., Mounkachi, O., El Moussaoui, H.: J. Magn. Magn. Mater. 361, 197 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Baker, G.A., Graves-Morris, P. (eds.): Padé approximants. Addison-Wesley, London (1981)Google Scholar
  7. 7.
    Blaha, P., Schwartz, K., Sorantin, P., Trikey, S.B.: Comput. Phys. Common. 59, 399 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    Lihl, F.: Monaths. Chem. 86, 186 (1955)CrossRefGoogle Scholar
  9. 9.
    Olés, A.: Report CEA, nr 28406, C1–787 (1964)Google Scholar
  10. 10.
    Holland, W.E., Brown, H.A.: Phys-Stat. Sol (a) 10, 249 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    Moron, M.C., Phys, J.: Condens. Matter. 8, 11141 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Stanley, H.E., Kaplan, T.A.: Phys. Rev. Lett. 16, 981 (1966)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Yun, W.S., Odkhuu, D., Hong, S.C., Lee, J.I.: Thin Solid Films 519, 8355 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Kosterlitz, J.M., Thouless, D.J.: J. Phys. C 5, L124 (1973)CrossRefGoogle Scholar
  15. 15.
    George, A., Baker, Jr., Nickel, B.G., Meiron, D.I.: Phys. Rev. B 17, 1365 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    Carr, C.E.H.Y.: Phys. Rev. Lett. 39, 1558 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    Ferrer, M., Moore, M.A., Wortis, M.: Phys. Rev. B 8, 5205 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    Swendsen, R.H.: ibid 27, 391 (1983)ADSGoogle Scholar
  19. 19.
    Wilson, K.G.: Phys. Rev. Lett. 28, 548 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    Sardar, S., Chakraborty, K.G.: Phys. A 238, 317 (1997)CrossRefGoogle Scholar
  21. 21.
    Van Dyke, J.P., Camp, W.J.: Phys. Rev. B 9, 3121 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    Griffiths, R.B.: Phys. Rev. 158, 557 (1967)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Masrour
    • 1
    • 2
  • E. K. Hlil
    • 3
  • M. Hamedoun
    • 4
  • A. Benyoussef
    • 2
    • 4
    • 5
  • O. Mounkachi
    • 4
  • H. El Moussaoui
    • 4
  1. 1.Laboratory of Materials, Processes, Environment and QualityCady Ayyed University, National School of Applied SciencesSafiMorocco
  2. 2.LMPHE (URAC 12), Faculty of ScienceMohammed V-Agdal UniversityRabatMorocco
  3. 3.Institut NéelCNRS et Université Joseph FourierGrenoble Cedex 9France
  4. 4.Institute of Nanomaterials and Nanotechnologies, MAScIRRabatMorocco
  5. 5.Hassan II Academy of Science and TechnologyRabatMorocco

Personalised recommendations