Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 8, pp 2525–2528 | Cite as

Monte Carlo Calculations of Magnetic Heat Capacity of La0.7Sr0.3-x MnO3-d

  • Mahmoud A. Hamad
Original Paper

Abstract

In this work, Monte Carlo method is used with Ising model to simulate magnetization versus temperature of La0.7Sr0.3-x MnO3-d . The simulated magnetization variation versus temperature is in a good agreement with the available experimental data. The calculations showed that the sample with x = 0.10 has the smallest amplitude of magnetic heat capacity peak. Moreover, the magnetic heat capacity increases with increasing x when x > 0.10.

Keywords

Monte Carlo simulation Ising model Magnetic specific heat 

References

  1. 1.
    Hamad, M.A.: Magnetocaloric effect in half-metallic double Perovskite S r 0.4 B a 1.6-x S r x F e M o O 6. Int. J. Thermophys. 34, 2144–2151 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Hamad, M.A.: Magnetocaloric effect in L a 1-x C d x M n O 3. J. Supercond. Novel Magn. 26, 3459–3462 (2013)CrossRefGoogle Scholar
  3. 3.
    Hamad, M.A.: Magnetocaloric effect of Perovskite E u 0.5 S r 0.5 C o O 3. J. Supercond. Novel Magn. 27, 277–280 (2014)CrossRefGoogle Scholar
  4. 4.
    Hamad, M.A.: Magnetocaloric effect of Perovskite manganites C e 0.67 S r 0.33 M n O 3. J. Supercond. Novel Magn. 26, 2981–2984 (2013)CrossRefGoogle Scholar
  5. 5.
    Hamad, M.A.: Magnetocaloric effect in L a 0.7 S r 0.3 M n O 3/T a 2 O 5 composites. Journal of Advanced Ceramics 2, 213–217 (2013)CrossRefGoogle Scholar
  6. 6.
    Hamad, M.A.: Magnetocaloric effect in (001)-oriented MnAs thin film. J. Supercond. Novel Magn. 27, 263–267 (2014)CrossRefGoogle Scholar
  7. 7.
    Hamad, M.A.: Magnetocaloric effect in nanopowders of P r 0.67 C a 0.33 F e x M n 1-x O 3. J. Supercond. Novel Magn. 27, 223–227 (2014)CrossRefGoogle Scholar
  8. 8.
    Hamad, M.A.: Magnetocaloric effect in L a 1.25 S r 0.75 M n C o O 6. J. Therm. Anal. Calorim. 115, 523–526 (2014)CrossRefGoogle Scholar
  9. 9.
    Hamad, M.A.: Simulation of magnetocaloric effect in L a 0.7 C a 0.3 M n O 3 ceramics fabricated by fast sintering process. J. Supercond. Novel Magn. 27, 269–272 (2014)CrossRefGoogle Scholar
  10. 10.
    Hamad, M.A.: Magnetocaloric effect in L a 0.65-x E u x S r 0.35 M n O 3. Phase Trans. 87, 460–467 (2014)CrossRefGoogle Scholar
  11. 11.
    Hamad, M.A.: J. Therm. Anal. Calorim. 111, 1251–1254 (2013)CrossRefGoogle Scholar
  12. 12.
    Hamad, M.A.: Int. J. Thermophys. 34, 1158–1165 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Salamon, M.B., Jaime, M.: Rev. Mod. Phys. 73, 583–628 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Dagotto, E.: Nanoscale phase separation and colossal magnetoresistance: the physics of manganites and related compounds. Springer Verlag (2003)Google Scholar
  15. 15.
    Dho, J., Kim, W.S., Hur, N.H.: Phys. Rev. Lett. 89, 027202 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, S.-F., Wang, Y.-R., Wu, Y.-C., Liu, Y.-J.: J. Alloys Compd. 480, 499–504 (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, S., Lin, B., Chen, Y., Liu, X., Meng, G.: J. Alloys Compd. 479, 764–768 (2009)CrossRefGoogle Scholar
  18. 18.
    Liu, S.P., Tang, G.D., Hao, P., Xu, L.Q., Zhang, Y.G., Qi, W.H., Zhao, X., Hou, D.L., Chen, W.: J. Appl. Phys. 105, 013905 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Tang, G.D., Liu, S.P., Zhao, X., Zhang, Y.G., Ji, D.H., Li, Y.F., Qi, W.H., Chen, W., Hou, D.L.: Appl. Phys. Lett. 95, 121906 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Shimura, T., Hayashi, T., Inaguma, Y., Itoh, M. J. Solid State Chem. 124, 250–263 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)MathSciNetADSCrossRefMATHGoogle Scholar
  22. 22.
    Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808–816 (1952)ADSCrossRefMATHGoogle Scholar
  23. 23.
    Zandvliet, H.J.W., Hoede, C.: Spontaneous magnetization of the square 2D Ising lattice with nearest- and weak next-nearest-neighbour interactions. Phase Trans. 82, 191–196 (2009)CrossRefGoogle Scholar
  24. 24.
    Liu, S.P., Tang, G.D., Li, Z.Z., Ji, D.H., Li, Y.F., Chen, W., Hou, D.L.: Phys. B 406, 869–876 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Dwight, K., Menyux, N.: Phys. Rev. 119(5), 1470–1479 (1960)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations