One-Dimensional Magnonic Crystal for Magnetic Field Sensing

  • S. Atalay
  • A. O. Kaya
  • V. S. Kolat
  • H. Gencer
  • T. Izgi
Original Paper


Magnetic field sensor capacity of one-dimensional magnonic crystals was investigated. The surface of YIG film was modulated by periodic Cu stripes and magnet array in one dimension. The surface modulations of YIG film form sharp band gaps, since magnetostatic surface wave (MSSW) propagates through the surface of a magnetic material. It was found that a very small magnetic field change leads to a large change in the peak value of band gap frequency. A 1-Oe change in the field caused nearly 2.7 and 2.6 MHz shift in the band gap frequency for magnonic crystals modulated by periodic Cu stripes and magnet array, respectively, which means that a very low magnetic field change could be detected. Such a large shift in the band gap frequency makes these one-dimensional magnonic crystals attractive candidates for magnetic field sensing.


Magnonic crystals Magnetic field sensor YIG film Magnetostatic surface wave (MSSW) Band gap 



This work was supported by TUBİTAK with project number 112T820


  1. 1.
    Ripka, P., Janosek, M.: IEEE Sensors J. 10, 1108–1116 (2010)CrossRefGoogle Scholar
  2. 2.
    Higuchi, S., Ueda, K., Yahiro, F., Nakata, Y., Uetsuhara, H., Okada, Y., Maeda, M.: IEEE Trans. Mag. 37, 2451–2453 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Kamada, O., Minemoto, H., Ishizuka, S.: J. Appl. Phys. 61, 3268–3270 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Drung, D., Assmann, C., Beyer, J., Kirste, A., Peters, M., Ruede, F., Schurig, T.: IEEE Trans. Appl. Supercond. 17, 699–704 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Rao, K.V., Humphrey, F.B., Costa-Kramer, J.L.: J. Appl. Phys. 76, 6204–6208 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Deeter, M.N., Rose, A.H., Day, G.W.: J. Lightwave Technol. 8, 1838–1842 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Takagi, H., Noda, J., Uneo, T., Kanazawa, N., Nakamura, Y., Inoue, M.: Elect. Comm. Jpn. 97, 11–16 (2014)CrossRefGoogle Scholar
  8. 8.
    Serga, A.A., Chumak, A.V., Hillebrands, B.: J. Phys. D: Appl. Phys. 43, 264002 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Ma, F.S., Lim, H.S., Zhang, V.L., Ng, S.C., Kuok, M.H.: Nanoscale Res. Lett. 7, 498 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals Princeton University Press, Princeton (1995)Google Scholar
  11. 11.
    Kruglyak, V.V., Demokritov, S.O., Grundler, D.: J. Phys. D: Appl. Phys. 43, 264001 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, Z.K., Zhang, V.L., Lim, H.S., Ng, S.C., Kuok, M.H., Jain, S., Adeyeye, A.O.: Appl. Phys. Lett. 94, 083112 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Schneider, T., Serga, A.A., Chumak, A.V., Hillebrands, B., Stamps, R.L., Kostylev, M.P.: Europhys. Lett. 90, 27003 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Demokritov, S.O., Serga, A.A., Andre, A., Demidov, V.E., Kostylev, M.P., Hillebrands, B., Slavin, A.N.: Phys. Rev. Lett. 93, 047201 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Bai, L., Kohda, M., Nitta, J.: Appl. Phys. Lett. 98, 172508 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Atalay
    • 1
  • A. O. Kaya
    • 1
  • V. S. Kolat
    • 1
  • H. Gencer
    • 1
  • T. Izgi
    • 1
  1. 1.Science Faculty, Physics DepartmentInonu UniversityMalatyaTurkey

Personalised recommendations