Study of a Modified Flux-Coupling-Type Superconducting Fault Current Limiter for Mitigating the Effect of DC Short Circuit in a VSC-HVDC System

  • Changhong Deng
  • Feng Zheng
  • Lei Chen
  • Miao Li
  • Pei Xia
  • Shichun Li
  • Zhijun Long
  • Lin Zhu
  • Fang Guo
Original Paper


In view of the development of high-temperature superconducting materials, more applications on electric utility devices are used in the power industry. In this paper, a modified flux-coupling-type superconducting fault current limiter (SFCL) is suggested to mitigate the effect of DC short circuit in a voltage source converter-based high-voltage direct current (VSC-HVDC) system. The SFCL’s structural principle is firstly presented. Then, considering that the SFCL is placed in series with a VSC-HVDC transmission line, its influence mechanism to the DC fault current’s dynamic process is analyzed, and some brief discussions on the design of the SFCL are carried out. Further, the detailed model of a 100-kV-class VSC-HVDC system integrated with the SFCL is built in MATLAB/SIMULINK, and a simulation analysis is performed. From the demonstrated results, applying the SFCL can help to suppress the DC fault current, compensate the DC voltage sag, and maintain the power balance. Consequently, the VSC-HVDC system’s robustness against the DC short circuit fault can be well enhanced.


DC fault Modified flux-coupling-type superconducting fault current limiter Technical design Simulation analysis VSC-HVDC system 



This work was supported in part by the Wuhan Planning Projects of Science and Technology (2013072304010827, 2013072304020824), Fundamental Research Funds for the Central Universities (2042014kf0011), and Natural Science Foundation of Hubei Province of China (2014CFB706).


  1. 1.
    Bray, J.W.: Superconducting applications: present and future. J. Supercond. Nov. Magn. 21, 335–341 (2008)CrossRefGoogle Scholar
  2. 2.
    Janowski, T., Wojtasiewicz, G.: Possibility of using the 2G HTS superconducting transformer to limit short-circuit currents in power network. IEEE Trans. Appl. Supercond. 22, 5500804 (2012)CrossRefGoogle Scholar
  3. 3.
    Kushino, A., Teranishi, Y., Kasai, S.: Low temperature properties of a superconducting niobium coaxial cable. J. Supercond. Nov. Magn. 26, 2085–2088 (2013)CrossRefGoogle Scholar
  4. 4.
    Shim, J.W., Nam, T., Kim, S., Hur, K.: On the reclose operation of superconducting fault current controller for smart power grid with increasing DG. IEEE Trans. Appl. Supercond. 23, 5603004 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, X.Y., Jin, J.X., Xin, Y., Shu, B., Tang, C.L., Zhu, Y.P., Sun, R.M.: Integrated SMES technology for modern power system and future smart grid. IEEE Trans. Appl. Supercond. 24, 3801606 (2014)Google Scholar
  6. 6.
    Nemdili, S., Belkhiat, S.: Modeling and simulation of resistive superconducting fault-current limiters. J. Supercond. Nov. Magn. 25, 2351–2356 (2012)CrossRefGoogle Scholar
  7. 7.
    Messalti, S., Belkhiat, S.: Comparative study of resistive and inductive superconducting fault current limiters SFCL for power system transient stability improvement. J. Supercond. Nov. Magn. 26, 3009–3015 (2013)CrossRefGoogle Scholar
  8. 8.
    Kim, W.-S., Hyun, O.-B., Park, C.-R., Yim, S.-W., Yu, S.-D., Yang, S.-E., Kim, H.-S., Kim, H.-R.: Dynamic characteristics of a 22.9 kV hybrid SFCL for short-circuit test considering a simple coordination of protection system in distribution networks. IEEE Trans. Appl. Superconduct. 22, 5601404 (2012)CrossRefGoogle Scholar
  9. 9.
    Hong, Z., Sheng, J., Yao, L., Gu, J., Jin, Z.: The structure, performance and recovery time of a 10 kV resistive type superconducting fault current limiter. IEEE Trans. Appl. Superconduct. 23, 5601304 (2013)CrossRefGoogle Scholar
  10. 10.
    Xin, Y., Gong, W.Z., Hong, H., Gao, Y.Q., Niu, X.Y., Zhang, J.Y., Sun, Y.W., Ren, A.L., Wang, H.Z., Zhang, L.F., Li, Q., Wei, Z.Q., Wang, L.Z., Cui, J.B., Niu, G.J., Xiong, Z.Q.: Development of a 220 kV/300 MVA superconductive fault current limiter. Supercond. Sci. Technol. 25, 105011 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Chen, Y., Liu, X., Sheng, J., Cai, L., Jin, Z., Gu, J., An, Z., Yang, X., Hong, Z.: Design and application of a superconducting fault current limiter in DC systems. IEEE Trans. Appl. Superconduct. 24, 5601305 (2014)Google Scholar
  12. 12.
    Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. 24, 592–602 (2009)CrossRefGoogle Scholar
  13. 13.
    Manohar, P., Ahmed, W.: Superconducting fault current limiter to mitigate the effect of DC line fault in VSC-HVDC system. In: International Conference on Power, Signals, Controls and Computation, pp 1–6 (2012)Google Scholar
  14. 14.
    Lee, J.-G., Khan, U.A., Hwang, J.-S., Seong, J.-K., Shin, W.-J., Park, B.-B., Lee, B.-W.: Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system. Phys. C 504, 163–166 (2014)CrossRefADSGoogle Scholar
  15. 15.
    Yamaguchi, H., Kataoka, T., Sato, Y.: Analysis of a 3-phase air-core superconducting power transformer. IEEE Trans. Appl. Supercond. 9, 1300–1303 (1999)CrossRefGoogle Scholar
  16. 16.
    Yamaguchi, H., Kataoka, T., Matsuoka, H., Mouri, T., Nishikata, S., Sato, Y.: Magnetic field and electromagnetic force analysis of 3-phase air-core superconducting power transformer. IEEE Trans. Appl. Supercond. 11, 1490–1493 (2001)CrossRefGoogle Scholar
  17. 17.
    Park, D.K., Ahn, M.C., Yang, S.E., Yoon, Y.S., Seok, B.-Y., Lee, C., Chang, H.-M., Ko, T.K.: Development of 220 V/300 A class non-inductive winding type fault current limiter using 2G HTS wire. IEEE Trans. Appl. Superconduct. 17, 1863–1866 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Ahn, M.C., Park, D.K., Yang, S.E., Ko, T.K.: Impedance characteristics of non-inductive coil wound with two kinds of HTS wire in parallel. IEEE Trans. Appl. Superconduct. 18, 640–643 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Zijian, W., Junjia, H., Xiaogen, Y., Jiazheng, L., Dong, H., Hanming, Z.: 10 kV high speed vacuum switch with electromagnetic repulsion mechanism. Trans. China. Electrotech. Soc. 24, 68–75 (2009)Google Scholar
  20. 20.
    Chen, L., Tang, Y., Li, Z., Ren, L., Shi, J., Cheng, S.: Current limiting characteristics of a novel flux-coupling type superconducting fault current limiter. IEEE Trans. Appl. Superconduct. 20, 1143–1146 (2010)CrossRefADSGoogle Scholar
  21. 21.
    Ren, L., Tang, Y., Li, Z., Chen, L., Shi, J., Jiao, F., Li, J.: Techno-economic evaluation of a novel flux-coupling type superconducting fault current limiter. IEEE Trans. Appl. Superconduct. 20, 1242–1245 (2010)CrossRefADSGoogle Scholar
  22. 22.
    Chen, L., Tang, Y.J., Shi, J., Chen, N., Song, M., Cheng, S.J., Hu, Y., Chen, X.S.: Influence of a voltage compensation type active superconducting fault current limiter on the transient stability of power system. Phys. C 469, 1760–1764 (2009)CrossRefADSGoogle Scholar
  23. 23.
    Du, C., Bollen, M., Agneholm, E., Sannino, A.: A new control strategy of a VSC-HVDC system for high-quality supply of industrial plants. IEEE Trans. Power Del. 22, 2386–2394 (2007)CrossRefGoogle Scholar
  24. 24.
    Du, C., Agneholm, E., Olsson, G.: Comparison of different frequency controllers for a VSC-HVDC supplied system. IEEE Trans. Power Del. 23, 2224–2232 (2008)CrossRefGoogle Scholar
  25. 25.
    Yang, J., Fletcher, J.E., O’Reilly, J.: Short-circuit and ground fault analyses and location in VSC-based DC network cables. IEEE Trans. Ind. Electron. 59, 3827–3837 (2012)CrossRefGoogle Scholar
  26. 26.
    Larruskain, D.M., Zamora, I., Abarrategui, O., Iturregi, A.: A solid-state fault current limiting device for VSC-HVDC systems. Int. J. Emerg. Electr. Power Syst. 14, 375–384 (2013)ADSGoogle Scholar
  27. 27.
    Elschner, S., Kudymow, A., Fink, S., Goldacker, W., Grilli, F., Schacherer, C., Hobl, A., Bock, J., Noe, M.: ENSYSTROB–resistive fault current limiter based on coated conductors formedium voltage application. IEEE Trans. Appl. Supercond. 21, 1209–1212 (2011)CrossRefADSGoogle Scholar
  28. 28.
    de Sousa, W.T.B., Polasek, A., Silva, F.A., Dias, R., Jurelo, A.R., de Andrade Jr., R.: Simulations and tests of MCP-BSCCO-2212 superconducting fault current limiters. IEEE Trans. Appl. Supercond. 22, 5600106 (2012)CrossRefGoogle Scholar
  29. 29.
    de Sousa, W.T.B., Dias, R., da Silva, F.A., Polasek, A., de Andrade Jr., R.: Comparison between the fault current limiting performance of Bi-2212 bifilar components and 2G YBCO coils. IEEE Trans. Appl. Supercond. 23, 5602204 (2013)CrossRefGoogle Scholar
  30. 30.
    Lee, S., Kang, H., Bae, D.K., Ahn, M.C., Mun, T., Park, K., Lee, Y., Ko, T.K.: Development of 6.6 kV-200 A DC reactor type superconducting fault current limiter. IEEE Trans. Appl. Superconduct. 14, 867–870 (2004)CrossRefGoogle Scholar
  31. 31.
    Bae, D.K., Kang, H., Ahn, M.C., Yoon, Y.S., Ko, T.K.: Design and manufacturing of the large scale high-Tc superconducting DC magnet for the 2.3 MVA SFCL. IEEE Trans. Appl. Superconduct. 15, 1965–1969 (2005)CrossRefGoogle Scholar
  32. 32.
    Grilli, F., Ashworth, S.P.: Quantifying AC losses in YBCO coated conductor coils. IEEE Trans. Appl. Superconduct. 17, 3187–3190 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Ying, L., Sheng, J., Lin, B., Yao, L., Zhang, J., Jin, Z., Li, Y., Hong, Z.: AC loss and contact resistance of resistive type fault current limiter using YBCO coated conductors. IEEE Trans. Appl. Superconduct. 22, 5602204 (2012)CrossRefGoogle Scholar
  34. 34.
    Song, M., Tang, Y., Zhou, Y., Ren, L., Chen, L., Cheng, S.: Electromagnetic characteristics analysis of air-core transformer used in voltage compensation type active SFCL. IEEE Trans. Appl. Superconduct. 20, 1194–1198 (2010)CrossRefADSGoogle Scholar
  35. 35.
    Feltes, C., Wrede, H., Koch, F.W., Erlich, I.: Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission. IEEE Trans. Power Syst. 24, 1537–1546 (2009)CrossRefGoogle Scholar
  36. 36.
    Moawwad, A., El Moursi, M.S., Xiao Jr., W., Kirtley, J.L.: Novel configuration and transient management control strategy for VSC-HVDC. IEEE Trans. Power Syst. 29, 2478–2488 (2014)CrossRefGoogle Scholar
  37. 37.
    Moon, J.-F., Lim, S.-H., Kim, J.-C., Yun, S.-Y.: Assessment of the impact of SFCL on voltage sags in power distribution system. IEEE Trans. Appl. Superconduct. 21, 2161–2164 (2011)CrossRefADSGoogle Scholar
  38. 38.
    China standard: setting guide for 3 kV∼110 kV power system protection equipment. DL-T 584 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Changhong Deng
    • 1
  • Feng Zheng
    • 1
  • Lei Chen
    • 1
  • Miao Li
    • 1
  • Pei Xia
    • 1
  • Shichun Li
    • 1
  • Zhijun Long
    • 1
  • Lin Zhu
    • 2
  • Fang Guo
    • 3
  1. 1.School of Electrical EngineeringWuhan UniversityWuhanChina
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of SubstationGuangdong Electric Power Design InstituteGuangzhouChina

Personalised recommendations