Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 4, pp 1295–1298 | Cite as

Nanoscale Dynamics in Complex Materials by Resonant X-Ray Photon Correlation Spectroscopy (rXPCS)

  • Alessandro Ricci
Original Paper

Abstract

Complex materials are characterized by a competition between multiple phases that coexist in a nanoscale phase separation scenario. In particular, there is a growing interest in understanding how the competition between charge density wave (CDW), the spin density wave (SDW), and the defects puddles promotes the material’s functionality at the macroscopic scale. For this reason, the finding of a new technique that could combine temporal and spatial resolution with bulk sensitivity is extremely important. A good solution could arrive by the use of a time-resolved scattering technique like X-ray photon correlation spectroscopy (XPCS). As example of possible application, we propose the study of CDW nanoscale dynamic, in a simple system like La 1.72Sr 0.28NiO 4, using the combination of the resonant X-ray scattering (RXS) and XPCS. This could provide important information on the CDW nanoscale dynamic in complex material characterized by nanoscale phase separation.

Keywords

Nanoscale phase separation Spin density wave Charge density wave Nanoscale dynamics Resonant X-ray photon correlation spectroscopy 

Notes

Acknowledgments

The author wants to dedicate the work to the fond memory of the late Professor Joseph Ashkenazi.

References

  1. 1.
    Ashkenazi, J., Johnson, N.F.: J. Supercond. Nov. Magn. 26, 2611 (2013)CrossRefGoogle Scholar
  2. 2.
    Ashkenazi, J.: J. Supercond. Nov. Magn. 24, 1281 (2011)CrossRefGoogle Scholar
  3. 3.
    Bianconi, A.: Nat. Phys. 9, 536 (2013). ISSN 1745–2473CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ghiringhelli, G., Le Tacon, M., Minola, M., Blanco-Canosa, S., Mazzoli, C., Brookes, N.B., De Luca, G.M., Frano, A., Hawthorn, D.G., He, F., et al.: Science 337, 821 (2012). ISSN 1095–9203CrossRefADSGoogle Scholar
  5. 5.
    Imada, M., Fujimori, A., Tokura, Y.: Rev. Mod. Phys. 70, 1039 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Dagotto, E.: Science 309, 257 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Becker, T., Streng, C., Luo, Y., Moshnyaga, V., Damaschke, B., Shannon, N., Samwer, K.: Phys. Rev. Lett. 89 (23), 237203 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Bianconi, A., Della Longa, S., Li, C., Pompa, M., Congiu-Castellano, A., Udron, D., Flank, A., Lagarde, P.: Phys. Rev. B 44 (18), 10126–10138 (1991)CrossRefADSGoogle Scholar
  9. 9.
    Bianconi, A., Missori, M., Oyanagi, H., Yamaguchi, H., Nishiara, Y., Della Longa, S.: Europhys. Lett. 31 (7), 411–415 (1995)CrossRefADSGoogle Scholar
  10. 10.
    Lanzara, A., Saini, N.L., Brunelli, M., Valletta, A., Bianconi, A.: J. Supercond. Nov. Magn. 10 (4), 319–321 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Fratini, M., Poccia, N., Ricci, A., Campi, G., Burghammer, M., Aeppli, G., Bianconi, A.: Nature 466, 841 (2010). ISSN 0028–0836CrossRefADSGoogle Scholar
  12. 12.
    Poccia, N., Fratini, M., Ricci, A., Campi, G., Barba, L., Vittorini-Orgeas, A., Bianconi, G., Aeppli, G., Bianconi, A.: Nat. Mater. 10, 733 (2011 ). ISSN 1476–1122CrossRefADSGoogle Scholar
  13. 13.
    Poccia, N., Chorro, M., Ricci, A., Xu, W., Marcelli, A., Campi, G., Bianconi, A.: Appl. Phys. Lett. 104, 221903 + (2014). ISSN 0003–6951CrossRefADSGoogle Scholar
  14. 14.
    Poccia, N., Bianconi, A., Campi, G., Fratini, M., Ricci, A.: Superconductor Science and Technology 25, 124004 + (2012 ). ISSN 0953–2048CrossRefADSGoogle Scholar
  15. 15.
    Poccia, N., Campi, G., Fratini, M., Ricci, A., Saini, N.L., Bianconi, A.: Physical Review B 84, 100504 + (2011 ). ISSN 1098–0121CrossRefADSGoogle Scholar
  16. 16.
    Ricci, A., Poccia, N., Campi, G., Joseph, B., Arrighetti, G., Barba, L., Reynolds, M., Burghammer, M., Takeya, H., Mizuguchi, Y., et al.: Phys. Rev. B 84, 060511 + (2011). ISSN 1098–0121CrossRefADSGoogle Scholar
  17. 17.
    Innocenti, D., Ricci, A., Poccia, N., Campi, G., Fratini, M., Bianconi, A.: J. Supercond. Nov. Magn. 22, 529 (2009 ). ISSN 1557–1939CrossRefGoogle Scholar
  18. 18.
    Ricci, A., Poccia, N., Joseph, B., Arrighetti, G., Barba, L., Plaisier, J., Campi, G., Mizuguchi, Y., Takeya, H., Takano, Y., et al.: Superconductor Science and Technology 24, 082002 + (2011)CrossRefADSGoogle Scholar
  19. 19.
    Campi, G., Ricci, A., Poccia, N., Barba, L., Arrighetti, G., Burghammer, M., Caporale, A.S., Bianconi, A.: Phys. Rev. B 87, 014517 + (2013)CrossRefADSGoogle Scholar
  20. 20.
    Ricci, A., Poccia, N., Campi, G., Coneri, F., Caporale, A.S., Innocenti, D., Burghammer, M. , Zimmermann, M. , Bianconi, A.: Scientific Reports 3, 2383 + (2013). ISSN 2045–2322CrossRefADSGoogle Scholar
  21. 21.
    Ricci, A., Poccia, N., Campi, G., Coneri, F., Barba, L., Arrighetti, G., Polentarutti, M., Burghammer, M., Sprung, M., Martin, et al.: New J. Phys. 16, 053030 + (2014). ISSN 1367–2630CrossRefADSGoogle Scholar
  22. 22.
    Johnson, N.F., Ashkenazi, J., Zhao, Z., Quiroga, L. arXiv:1011.6398 (2010)
  23. 23.
    Poccia, N., Ricci, A., Campi, G., Fratini, M., Puri, A., Di Gioacchino, D., Marcelli, A., Reynolds, M., Burghammer, M., Saini, N.L., et al.: Proc. Natl. Acad. Sci. 109, 15685 (2012)CrossRefADSGoogle Scholar
  24. 24.
    Poccia, N., Ricci, A., Bianconi, A.: Adv. Condens. Matter Phys. (2010)Google Scholar
  25. 25.
    Ricci, A., Poccia, N., Ciasca, G., Fratini, M., Bianconi, A.: J. Supercond. Nov. Magn. 22, 589 (2009). ISSN 1557–1939CrossRefGoogle Scholar
  26. 26.
    Ricci, A., Fratini, M., Bianconi, A.: J. Supercond. Nov. Magn. 22, 305 (2009). ISSN 1557–1939CrossRefGoogle Scholar
  27. 27.
    Polli, D., Rini, M., Wall, S., Schoenlein, R.W., Tomioka, Y., Tokura, Y., Cerullo, G., Cavalleri, A.: Nat. Mater. 6, 643 (2007). ISSN 1476–1122CrossRefADSGoogle Scholar
  28. 28.
    Grübel, G., Zontone, F.: Correlation spectroscopy with coherent X-rays. J. Alloys Compd. 362(1–2), 3–11 (2004)CrossRefGoogle Scholar
  29. 29.
    Grübel, G. et al.: XPCS at the European X-ray free electron laser facility. Nucl. Inst. Methods Phys. Res. B: Beam Interactions with Materials and Atoms 262(2), 357–367 (2007)CrossRefGoogle Scholar
  30. 30.
    Grübel, G. et al.: X-ray photon correlation spectroscopy (XPCS). In: Borsali, R., Pecora, R. (eds.) Soft Matter Characterization, pp 953–995. Springer, Netherlands (2008)CrossRefGoogle Scholar
  31. 31.
    Madsen, A. et al.: Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy. New J. Phys. 12(5), 055001 + (2010)CrossRefADSGoogle Scholar
  32. 32.
    Fluerasu et al.: Slow dynamics and aging in colloidal gels studied by x-ray photon correlation spectroscopy. Phys. Rev. E 76 (1) (2007)Google Scholar
  33. 33.
    Thurn-Albrecht, T. et al.: Photon correlation spectroscopy of colloidal palladium using a coherent X-ray beam. Phys. Rev. Lett. 77(27), 5437–5440 (1996)CrossRefADSGoogle Scholar
  34. 34.
    Grigoriew, H. et al.: Dynamic correlation in magnetorheological composite under magnetic field studied by XPCS. Solid State Commun. 150(17–18), 840–843 (2010)CrossRefADSGoogle Scholar
  35. 35.
    Pontoni, D. et al.: Microstructure and dynamics near an attractive colloidal glass transition. Phys. Rev. Lett. 90(18) (2003)Google Scholar
  36. 36.
    Hruszkewycz, S.O., other: High contrast X-ray Speckle from atomic-scale order in liquids and glasses. Phys. Rev. Lett. 109, 185502 + (2012)CrossRefADSGoogle Scholar
  37. 37.
    Sikharulidze et al.: Smectic membranes in motion: approaching the fast limits of X-ray photon correlation spectroscopy . Phys. Rev. Lett. 88, 115503 + (2002)CrossRefADSGoogle Scholar
  38. 38.
    Sikharulidze et al.: Surface and Bulk elasticity determined fluctuation regimes in smectic membranes. Phys. Rev. Lett. 91, 165504 + (2003)CrossRefADSGoogle Scholar
  39. 39.
    Robert, A. et al.: Structure and dynamics of electrostatically interacting magnetic nanoparticles in suspension. J. Chem. Phys. 122 (8), 084701 + (2005)CrossRefADSGoogle Scholar
  40. 40.
    Streit, S. et al.: Two-dimensional dynamics of metal nanoparticles on the surface of thin polymer films studied with coherent X rays . Phys. Rev. Lett. 98(4), 047801 + (2007)CrossRefADSGoogle Scholar
  41. 41.
    Leitner, M. et al.: Atomic diffusion studied with coherent X-rays. Nat. Mater. 8(9), 717–720 (2009)CrossRefADSGoogle Scholar
  42. 42.
    Stephenson, G.B. et al.: X-ray spectroscopy: revealing the atomic dance. Nat. Mater. 8(9), 702–703 (2009)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Shpyrko, O.G. et al.: Direct measurement of antiferromagnetic domain fluctuations. Nature 447(7140), 68–71 (2007)CrossRefADSGoogle Scholar
  44. 44.
    Konings, S. et al.: Magnetic domain fluctuations in an antiferromagnetic film observed with coherent resonant soft X-ray scattering. Phys. Rev. Lett. 106(7), 077402 + (2011)CrossRefADSGoogle Scholar
  45. 45.
    Brauer, S. et al.: X-ray intensity fluctuation spectroscopy observations of critical dynamics in Fe3Al. Phys. Rev. Lett. 74(11), 2010–2013 (1995)CrossRefADSGoogle Scholar
  46. 46.
    Pitney, J.A. et al.: Streaked speckle in Cu 3Au coherent x-ray diffraction. Phys. Rev. B 62, 13084–13088 (2000)CrossRefADSGoogle Scholar
  47. 47.
    Stadler, L.-M. et al.: Revealing antiphase-domain dynamics in alloys by combining advanced statistical techniques with x-ray photon correlation spectroscopy. Phys. Rev. B 69(22) (2004)Google Scholar
  48. 48.
    Stadler, L.-M. et al.: Investigating slow dynamics in alloys using X-ray photon correlation spectroscopy. Nucl. Inst. Methods Phys. Res. B: Beam Interactions with Materials and Atoms 238(1–4), 189–191 (2005)CrossRefADSGoogle Scholar
  49. 49.
    Fluerasu, A. et al.: X-ray intensity fluctuation spectroscopy studies on phase-ordering systems. Phys. Rev. Lett. 94(5) (2005)Google Scholar
  50. 50.
    Müller, L. et al.: Time-dependent phenomena in athermal martensitic transformations. Mater. Sci. Eng. A 438–440, 122–125 (2006)CrossRefGoogle Scholar
  51. 51.
    Müller, L.: Slow aging dynamics and avalanches in a gold-cadmium alloy investigated by X-ray photon correlation spectroscopy. Phys. Rev. Lett. 107, 105701 + (2011)CrossRefADSGoogle Scholar
  52. 52.
    Ruta, B. et al.: Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy. Phys. Rev. Lett. 109, 165701 + (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations