Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 1, pp 191–196 | Cite as

Magnetic and Mössbauer Spectroscopy Studies of NiFe2O4/SiO2 Nanocomposites Synthesized by Sol-Gel Method

  • Li Wang
  • Ji Li
  • Ming Lu
  • He Dong
  • Jie Hua
  • Shichong Xu
  • Haibo Li
Original Paper

Abstract

Single-phase NiFe2O4 nanoparticles dispersed in SiO2 (30 wt %) matrix were synthesized by sol-gel method. The effects of the annealing temperature on the structural and magnetic properties of the samples were investigated at room temperature by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer, and Mössbauer spectroscopy. The samples annealed at above 800C exhibited single-phase cubic spinel structure. The lattice constant of NiFe2O4 increased from 0.8348 to 0.8359 nm, the saturation magnetization of the samples increased from 8.24 to 29.28 emu/g, and their coercivity increased from 23.4 to 179.0 Oe when the average grain size of NiFe2O4 in the nanocomposites increased from 6 to 40 nm with varying annealing temperatures from 800 to 1200C. The thickness of the dead layer on the surface of the ferrite grain was obtained to about (0.76 ±0.03) nm. The study of Mössbauer spectroscopy indicated the evolution of magnetic properties of the samples from superparamagnetic to magnetically ordered character with increasing grain size of NiFe2O4.

Keywords

Sol-gel method Nanocomposite Magnetic property Mössbauer spectroscopy 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21201078 and 21371071) and Foundation of Science and Technology of Jilin, China (No. 201205075).

References

  1. 1.
    Bayrakdar, H., Yalçın, O., Vural, S., Esmer, K.: Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrite. J. Magn. Magn. Mater. 343, 86–91 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Karaoglu, E., Baykal, A.: CoFe2O4-Pd(o) nanocomposite: magnetically recyclable catalyst. J. Supercond. Nov. Magn. 27, 2041–2047 (2014)CrossRefGoogle Scholar
  3. 3.
    Masoud, E.M.: Improved initial discharge capacity of nanostructured Ni-Co spinel ferrute as anode material in lithium ion batteries. Solid State Ionics 253, 247–252 (2013)CrossRefGoogle Scholar
  4. 4.
    Rahman, S., Nadeem, K., Anis-ur-Rehman, M., Mumtaz, M., Naeem, S., Letofsky-Papst, I.: Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram. Int. 39, 5235–5239 (2013)CrossRefGoogle Scholar
  5. 5.
    Prabhakaran, T., Hemalatha, J.: Combustion synthesis and characterization characterization of highly crystalline single phase nickel ferrite nanoparticles. J. Alloys Compd. 509, 7071–7077 (2011)CrossRefGoogle Scholar
  6. 6.
    Mahalakshmi, S., SrinivasaManja, K., Nithiyanantham, S.: Electrical properties of nanophase ferrites doped with rare earth ions. J. Supercond. Nov. Magn. 27, 2083–2088 (2014)CrossRefGoogle Scholar
  7. 7.
    Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., Muthamizhchelvan, C.: Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol-gel auto-combustion method. Mater. Res. Bull. 46, 2204–2207 (2011)CrossRefGoogle Scholar
  8. 8.
    Nikolic, A.S., Boskovic, M., Spasojevic, V., Jancar, B., Antic, B.: Magnetite/Mn-ferrite nanocomposite with improved magnetic properties. Mater. Lett. 120, 86–89 (2014)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Zhai, B., Yang, M., Han, W., Shao, X.: ZrO2/CeO2 nanocomposite: two step synthesis, microstructure, and visible-light photocatalytic activity. Mater. Lett. 112, 90–93 (2013)CrossRefGoogle Scholar
  10. 10.
    Vahedi, V., Pasbakhsh, P.: Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polym. Test. 39, 101–114 (2014)CrossRefGoogle Scholar
  11. 11.
    Baykal, A., Güner, S., Demir, A., Esir, S., Genç, F.: Effect of zinc substitution on magneto-optical properties of Mn1−xZnxFe2O4/SiO2 nanocomposites. Ceram. Int. 40, 13401–13408 (2014)CrossRefGoogle Scholar
  12. 12.
    Garcia-Cerda, L.A., Torres-Garia, V.A., Matutes-Aquino, J.A., Ayaly-Valenzuela, O.E.: Magnetic nanocomposites: preparation and characterization of Co-ferrite nanoparticles in silica matrix. J. Alloys Compd. 369, 148–151 (2004)CrossRefGoogle Scholar
  13. 13.
    Plocek, J., Hutlová, A., Nizňansky, D., Bursik, J., Rehspringer, J.L., Micka, Z.: Preparation of CuFe2O4/SiO2 nanocomposite by the sol-gel method. Mater. SCI-Poland 23, 697–705 (2005)Google Scholar
  14. 14.
    Plocek, J., Hulová, A., Nizňansky, D., Bursik, J., Rehspriger, J.-L., Micka, Z.: Preparation of ZnFe2O4/SiO2 and CdFe2O4/SiO2 nanocomposites by sol-gel method. J. Non-Cryst Solids 315, 70–76 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Hutlova, A., Niznansky, D., Plocek, J., Bursik, J., Rehspringer, J.L.: Nanocomposites NiFe2O4/SiO2 and CoFe2O4/SiO2 preparation by sol-gel method and physical properties. J. Sol-Gel Sci Techin. 26, 473–477 (2003)CrossRefGoogle Scholar
  16. 16.
    Nadeem, K., Traussnig, T., Letofsky-Papst, I., Krenn, H., Brossmann, U., Würschum, R.: Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix. J. Alloys Compd. 493, 385–390 (2010)CrossRefGoogle Scholar
  17. 17.
    Sanchez, R.D., Rivas, J., Vaqueiro, P., Lopez-Quintela, M.A., Caeiro, D.: Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method. J. Magn. Magn. Mater. 247, 92–98 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Kumar, L., Kar, M.: Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Sreeja, V., Vijayanand, S., Deka, S., Joy, P.A.: Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interact. 183, 99–107 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Kodama, R.H., Berkowitz, A.E., McNiff, E.J. Jr., Foner, S.: Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394–397 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Bahçeci, S., Unal, B., Baykal, A., Sözeri, H., Karaoglu, E., Esat, B.: Synthesis and characterization of polypropiolate sodium (PPNa)-Fe3O4 nanocomposite. J. Alloys Compd. 509, 8825–8831 (2011)CrossRefGoogle Scholar
  22. 22.
    Wang, L., Li, J., Liu, M., Zhang, Y.M., Lu, J.B., Li, H.B.: Effects of annealing temperature on structure and magnetic properties of CoAl0.2Fe1.8O4/SiO2 nanocomposites. J. Magn. Magn. Mater. 324, 4200–4203 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    MØrup, S.: Mössbauer effect in small particles. Hyperfine Interact. 60, 959–973 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Li Wang
    • 1
  • Ji Li
    • 1
  • Ming Lu
    • 1
  • He Dong
    • 1
  • Jie Hua
    • 1
  • Shichong Xu
    • 1
  • Haibo Li
    • 1
  1. 1.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversitySipingChina

Personalised recommendations