Advertisement

Magnetic Properties of a Transverse Ising Nanoparticle

  • S. Bouhou
  • I. Essaoudi
  • A. Ainane
  • A. Oubelkacem
  • R. Ahuja
  • F. Dujardin
Original Paper

Abstract

We use the effective field theory with a probability distribution technique to investigate the magnetic properties of an antiferromagnetic Ising core/shell nanoparticle with a negative interlayer coupling core/shell in the presence of both the longitudinal and the transverse fields. Nearest-neighbor pair interactions are incorporated between the Ising spins in three parts that are core, core/shell, and surface shell. The effects of the external and the transverse fields and the exchange interactions between core/shell and in surface shell on the hysteresis loops and the susceptibility of the nanoparticle are examined. A number of interesting phenomena have been found.

Keywords

Effective field theory Antiferromagnetic nanoparticle Hysteresis loops Transverse field 

Notes

Acknowledgments

This work has been initiated with the support of URAC: 08, the project RS: 02 (CNRST) and the Swedish Research Links programme dnr-348-2011-7264 and completed during a visit of A. A at the Max Planck Institut für Physik Komplexer Systeme Dresden, Germany. The authors would like to thank all the organizations.

References

  1. 1.
    Won, J., Kim, M.W., Yi, Y., Kim, Y.H., Jung, N., Kim, T.: Science 309, 121 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Silva, A.C., Oliveira, T.R., Mamani, J.B., Malheiros, S.M.E., Malavolta, L., Pavon, L.F., Sibov, T.T., Amaro, E., Tannus, A., Vidoto, E.L.G., Martins, M.J., Santos, R.S., Gamarra, L.F.: International Journal of nanomedecine 6, 591 (2011)Google Scholar
  3. 3.
    Kodama, R.H., Berkowitz, A.E.: Phys. Rev. B 59, 6321 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Kodama, R.H.: J. Magn. Magn. Mater. 200, 359 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Yalçin, O., Erdem, R., Ovunç, S.: Acta Phys. Polon. A 114, 835 (2008)ADSGoogle Scholar
  6. 6.
    Zhao, A., Beauregard, D.A., Loizon, L., Davletov, B., Brindle, K.M.: Nat. Med. 7, 1241 (2001)CrossRefGoogle Scholar
  7. 7.
    Tibbe, A.G.J., Grooth, B.G., Greve, J., Liberti, P., Dolan, G., Terstappen, L.: Nat. Biotechnol. 17, 1210 (1999)CrossRefGoogle Scholar
  8. 8.
    Hilger, I., Fruhauf, K., Andra, W., Hiergeist, R., Hergt, R., Kaiser. W.A.: Acad.: Radiol. 9, 198 (2002)CrossRefGoogle Scholar
  9. 9.
    Yang, J.H., Yang, N.N., Wang, Y.X., Zhang, Y.J., Zhang, Y.M., Liu, Y., Wei, M.B., Yang, Y.T., Wang, R., Yang, S.Y.: Solide State Commun. 151, 1428 (2011)CrossRefADSGoogle Scholar
  10. 10.
    Restrepo, J., Labaye, Y., Greneche, J.M.: Physica B 384, 221 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Restrepo, J., Labaye, Y., Berger, L., Greneche, J.M.: J. Magn. Magn. Mater. 272-276, 681 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3014 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3410 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Kaneyoshi, T.: Phys. Status Solidi (b) 248, 250 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Kaneyoshi, T.: J. Magn. Magn. Mater. 323, 2483 (2011)CrossRefADSGoogle Scholar
  16. 16.
    Kaneyoshi, T.: J. Magn. Magn. Mater. 321, 3630 (2009)CrossRefADSGoogle Scholar
  17. 17.
    Kaneyoshi, T.: Physica Letters A 376, 2352 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Akinci, U.: J. Magn. Magn. Mater. 324, 3951 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Yuksel, Y., Akinci, U., Polat, H.: Physica Status Solidi b 250, 196 (2013)CrossRefADSGoogle Scholar
  20. 20.
    Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Ahuja, R., Dujardin, F.: J. Magn. Magn. Mater. 336, 75 (2013)CrossRefADSGoogle Scholar
  21. 21.
    Bouhou, S., Essaoudi, I., Ainane, A., Dujardin, F., Ahuja, R., Saber, M.: J. Supercond. Nov. Magn. 26, 201 (2013)CrossRefGoogle Scholar
  22. 22.
    Garanin, D.A., Kachkachi, H.: Phys. Rev. Lett. 90, 65504 (2003)CrossRefADSGoogle Scholar
  23. 23.
    Wang, H., Zhou, Y., Wang, E., Lin, D.L.: Chin. J. Phys. 39, 85 (2001)Google Scholar
  24. 24.
    Saber, M.: Chin. J. Phys. 35, 577 (1997)Google Scholar
  25. 25.
    Rocha, J.C.S., Costa, B.V., Coura, P.Z., Leonel, S.A., Dias, R.A.: J. Magn. Magn. Mater. 324, 2342 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Bouhou
    • 1
  • I. Essaoudi
    • 1
    • 3
  • A. Ainane
    • 1
    • 2
    • 3
    • 4
  • A. Oubelkacem
    • 1
  • R. Ahuja
    • 3
  • F. Dujardin
    • 4
  1. 1.Laboratoire de Physique des Matériaux et Modélisations des Systèmes, (LP2MS) Unité Associée au CNRST-URAC 08, Faculté des Sciences, Département de PhysiqueUniversité Moulay IsmailMeknèsMorocco
  2. 2.Max-Planck-Institut für Physik Complexer SystemeDresdenGermany
  3. 3.Condensed Matter Theory Group, Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.Laboratoire de Physique des Milieux Denses (LPMD)Institut de Chimie, Physique et Matériaux (ICPM)MetzFrance

Personalised recommendations