Observation of Room Temperature Ferromagnetism in Conducting and Insulating Cu doped ZnO Thin Films

  • Muhammad Younas
  • Rolf Lortz
  • Shi-Chen Su
  • F. C. C. Ling
Original Paper


With pulsed laser deposition, the Cu0.04Zn0.96O thin films are grown at 600 °C under three different oxygen pressures, namely PO2 = 0.00, 0.02, and 1.00 Pa. X-ray diffraction shows single-phase material for the samples grown under PO2 = 0.00 and 1.00 Pa and CuO secondary phase for the PO2 = 0.02 Pa grown sample. The observation of satellite structures in the Cu 2p core level X-ray photoelectron spectroscopy (XPS) spectra suggest the presence of Cu2+ and CuO secondary phases in the samples grown at PO2 = 0.02 and 1.00 Pa. The sample grown under vacuum (PO2 = 0.00 Pa) shows mixed Cu oxidation state of 1 + or 2 + . The sample grown without oxygen is n-type and those grown with oxygen are highly insulating. The insulating sample grown at PO2 = 0.02 Pa shows highest magnetization due to possible collective behavior of Cu2+ – O v – Cu2+ network in the form of bound magnetic polaron (BMP) and ferromagnetic superexchange interaction coming from uncompensated surface spins of the Cu ions in the CuO secondary phase. Both delocalized electrons (∼3.32 × 1018) due to oxygen deficient defects and reduced amount of effective Cu2+ ions discredit the BMP model for this vacuum grown sample, and magnetism is suggested due to O v and presence of possible CuO secondary phase.


Diluted mgnetic semiconductor Cu doped ZnO Thin films XPS Magnetization Secondary phase 



The work presented here was supported by the RGC, HKSAR under the GRF (HKU703612P) and SEG HKUST03, as well as HKU Seed Funding Program for Basic Research (201111159037), and the National Natural Science Foundation of China (No. 61205037), the China Postdoctoral Science Foundation funded project (No. 2013M531862) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20124407120017).


  1. 1.
    Liu, H., Zeng, F., Gao, S., Wang, G., Song, C., Pan, F.: Phys. Chem. Chem. Phys. 15, 13153 (2013)CrossRefGoogle Scholar
  2. 2.
    Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., Coey, J.M.D.: Phys. Rev. Lett. 93, 177206 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Keavney, D.J., Buchholz, D.B., Ma, Q., Chang, R.P.H.: Appl. Phys. Lett. 91, 012501 (2007)CrossRefADSGoogle Scholar
  4. 4.
    Herng, T., Qi, D.C., Berlijn, T., Yi, J., Yang, K., Dai, Y., Feng, Y., Santoso, I., Hanke, C., Gao, S., X., Wee, A., Ku, W., Ding, J., Rusydi, A.: Phys. Rev. Lett. 105, 207201 (2010)CrossRefADSGoogle Scholar
  5. 5.
    Ma, Q., Buchholz, D., Chang, R.P.H.: Phys. Rev. B 78, 214429 (2008)CrossRefADSGoogle Scholar
  6. 6.
    Sudakar, C., Thakur, J. S., Lawes, G., Naik, R., Naik, V. M.: Phys. Rev. B 75, 054423 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Biegger, E., Fonin, M., Rüdiger, U., Janben, N., Beyer, M., Thomay, T., Bratschitsch, R., Dedkov, Yu. S.: J. Appl. Phys. 101, 073904 (2007)CrossRefADSGoogle Scholar
  8. 8.
    Chakraborti, D., Narayan, J., Prater, J. T.: Appl. Phys. Lett. 90, 062504 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy. Physical Electronic, Inc., Eden Prairie, Minnesota (1992)Google Scholar
  10. 10.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Nat. Mater. 4, 173 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Muhammad Younas
    • 1
  • Rolf Lortz
    • 2
  • Shi-Chen Su
    • 1
  • F. C. C. Ling
    • 1
  1. 1.Department of PhysicsThe University of Hong KongHong KongPeople’s Republic of China
  2. 2.Department of PhysicsHong Kong University of Science and TechnologyHong KongPeople’s Republic of China

Personalised recommendations