Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 2, pp 573–577 | Cite as

Temperature Elevation of Current-Driven Phase-Slip Centers in YBa2Cu3O7 Strips

  • Khalil Harrabi
Original Paper

Abstract

We have studied the destruction of the superconductivity in narrow YBCO strips at different temperatures caused by an electrical current pulse. Different dissipative regimes can be distinguished, and phase slip center (PSC) are more likely to appear for an overcritical current and close to the transition temperature T c . However, far below T c , the dissipation generates a hotspot (HS). Temperatures reached in these modes were calculated based on the Joule effect. The results of these computations are consistent with all the specific cases, PSCs and HSs, measured experimentally. One of the most attractive applications of the superconductivity at non-equilibrium regime is the single photon detection. Its principle relies on the hotspot phenomena and mainly the heat evacuation, which can determine the reset time of the photon detection.

Keywords

Superconductivity Hotspot Phase slip centers 

Notes

Acknowledgments

K.H gratefully acknowledges the support of the King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project.

References

  1. 1.
    Goltsman, G.N., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., Voronov, B., Dzardanov, A., Williams2, C., Sobolewski, R.: App. Phys. Lett. 79, 705 (2001)Google Scholar
  2. 2.
    Dorenbos, S.N., Reiger, E.M., Perinetti, U., Zwiller, V., Zijlstra, T., Klapwijk, T.M.: Appl. Phys. Lett. 93, 131101 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Tinkham, M.: 11, 2nd Intro. to Superconductivity. McGraw-Hill, Singapore (1996)Google Scholar
  4. 4.
    Harrabi, K., Ladan, F.R., Dinh Lam, Vu, Maneval, J.-P., Hamet, J.-F., Villégier, J.-P., Bland, R.W.J.: Low Temp. Phys 157, 36 (2009)CrossRefADSGoogle Scholar
  5. 5.
    Harrabi, K.J.: Supercond. Nov. Magn. 26, 1865 (2013)CrossRefGoogle Scholar
  6. 6.
    Ladan, F.-R., Harrabi, Kh., Rosticher, M., Villard, C., Mathieu, P., Maneval, J.-P.J.: Low Temp. Phys. 153, 103 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Pals, J.A., Wolter, J.: Phys. Lett. A 70, 150 (1979)CrossRefADSGoogle Scholar
  8. 8.
    Tinkham, M.: In: Gray, K.E. (ed.): In Non-Equilibrium Superconductivity, Phonons and Kapitza Boundaries, pp 231–262. Plenum, New York (1981)Google Scholar
  9. 9.
    Webb, W.W., Warburton, R.J.: Phys. Rev. Lett 20, 461 (1968)CrossRefADSGoogle Scholar
  10. 10.
    Meyer, J.D.: App. Phys. 2, 303 (1973)CrossRefADSGoogle Scholar
  11. 11.
    Skocpol, W.J., Beasley, M.R., Tinkham, M.J.: Low Temp. Phys. 16, 145 (1974)CrossRefADSGoogle Scholar
  12. 12.
    Skocpol, W.J., Beasley, M.R., Tinkham, M.J.: Appl. Phys. 45, 4054 (1974)CrossRefADSGoogle Scholar
  13. 13.
    Onuki, M., Fujiyoshi, T., Ohsumi, H., Kubota, H., Hoshino, T.: Phys. C 235–240, 1383 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physics DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations