Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 11, pp 2475–2485 | Cite as

The Influence of the Microstructure and Morphology of CeO 2 Buffer Layer on the Properties of YBCO Films PLD Grown on Ni Tape

  • V. Mihalache
  • N. Stefan
  • I. Enculescu
  • I. N. Mihailescu
  • M. Socol
  • M. Miroi
Original Paper

Abstract

YBa2Cu3O7−δ films were deposited on CeO2-buffered nickel substrates, with different buffer thickness. Full width at half maximum of rocking curve, Δω, of CeO2 and yttrium barium copper oxide (YBCO), as well as the critical temperature, T c, of YBCO were shown to be strongly dependent on buffer thickness. They behave similarly but not proportional to the buffer thickness increase. This and the fact that Δω vs. buffer thickness and T c vs. buffer thickness for YBCO behave similar with RMS roughness vs. thickness of CeO2 indicates that the surface peculiarity of buffers is responsible for YBCO properties. More precisely, the surface of CeO2 films prepared by the chemical solution route based on propionic acid is prone to agglomerate (de-wet) and the degree of agglomeration depends in an intricate way on buffer thickness. We showed that nor RMS roughness neither (00 l) texture degree can define alone the surface suitable for c-axis YBCO nucleation. The {111} faceted grains (even in the case of high (00 l) texture) and other defects generated by agglomeration supply a low fraction of (00 l) flat terminations of buffer that affect the nucleation of c-axis-oriented YBCO phase. Moreover, the thermal instability of the surface morphology of CeO2 buffers (further development of de-wetting process, {111} faceted grains, etc. during superconducting layer deposition) influence the quality of YBCO films.

Keywords

CeO2 buffer layer YBCO film PLD Microstructure 

Notes

Acknowledgments

The authors would like to express their gratitude to S. Popa, M. Cioanger, and M. Cernea for their help in the experimental and technical work. This work was supported by Romanian Ministry of Education and Research in the framework of Partnership Program, project 138/2012 and IDEI, project 377/2012.

References

  1. Solovyov, V.F., Develos-Bagarinao, K., Nykypanchuk, D.: Nanoscale abnormal grain growth in (001) epitaxial ceria. Phys. Rev. B. 80, 104102 (2009).CrossRefADSGoogle Scholar
  2. Coll, M., Pomar, A., Puig, T., Obradors, X.: Atomically flat surface: the key issue for solution-derived epitaxial multilayers. Appl. Phys. Express. 1, 121701 (2008).CrossRefADSGoogle Scholar
  3. Mihalache, V., Pasuk, I.: Grain growth, microstructure and surface modification of textured CeO(2) thin films on Ni substrate. Acta Mater. 59, 4875–4885 (2011).CrossRefGoogle Scholar
  4. Apostol, Stefan, N., Barjega, R., Luculescu, C., Andrei, N. A., Mihailescu, I.: Metal. Int. 16, 53 (2011).Google Scholar
  5. Bradea, I, Popa, S., Aldica, G., Mihalache, V., Crisan, A.: Magnetization and susceptibility studies on BaZrO3-doped YBa2Cu3O7−x bulk superconductors. J. Supercond. Inc. Novel Magn. 15, 237–242 (2002).ADSGoogle Scholar
  6. Srolovitz, D. J., Safran, S.A.: Capillary instabilities in thin films. I. Energetics. J. Appl. Phys. 60, 247–254 (1986).CrossRefADSGoogle Scholar
  7. Nolan, T.P., Sinclair, R., Beyers, R.: Modeling of agglomeration in polycrystalline thin films: application to TiSi2 on a silicon substrate. J. Appl. Phys. 71, 720–724 (1992).CrossRefADSGoogle Scholar
  8. Jiran, E., Thompson, C.V.: Capillary instabilities in thin, continuous films. Thin Solid Films. 208, 23–28 (1992).CrossRefADSGoogle Scholar
  9. Mullins, W.W.: Flattening of a nearly planar solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959).CrossRefADSGoogle Scholar
  10. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957).CrossRefADSGoogle Scholar
  11. Srolovitz, D.J., Safran, S.A.: Capillary instabilities in thin films: II. Kinetics. J. Appl. Phys. 60, 255–261 (1986).CrossRefADSGoogle Scholar
  12. Rha, J.J., Park, J.K.: Stability of the grain configurations of thin films—a model for agglomeration. J. Appl. Phys. 82, 1608–1616 (1997).CrossRefADSGoogle Scholar
  13. Rha, J.J., Park, J.K.: Agglomeration of TiSi2 thin film on (100) Si substrates. J. Appl. Phys. 82, 2933–2937 (1997).CrossRefADSGoogle Scholar
  14. Rost, M. J, Quist, D.A, Frenken, J.W.M.: Grains, growth, and grooving. Phys. Rev. Lett. 91, 026101 (2003).CrossRefADSGoogle Scholar
  15. Zhao, Y., Grivel, J. C, Liu, M., Suo, H.: Surface engineering of biaxial Gd2Zr2O7 thin films deposited on Ni–5at%W substrates by a chemical solution method. Cryst. Eng. Comm. 14, 3089–3095 (2012).CrossRefGoogle Scholar
  16. Zhao, Y., Grivel, J. C.: Controlled growth of epitaxial CeO2 thin films with self-organized nanostructure by chemical solution method. Cryst. Eng. Comm. 15, 3816–3823 (2013).CrossRefGoogle Scholar
  17. Stauble-Pumpin, B., Matijasevic, V.C., Ilge, B., Mooij, J.E., Peterse, W.J.A.M, Scholte, F., Tuinstra, P.M.L.O, Venvik, H.J., Wai, D.S.: Growth mechanisms of coevaporated SmBa2Cu3Oy thin films. Phys. Rev. B. 52, 7604–7618 (1995).CrossRefADSGoogle Scholar
  18. Zheng, H. Y., Lowndes, D.H., Zhu, S., Budai, J.D., Warmack, R.J.: Early stages of YBa2Cu3O7−δ epitaxial growth on MgO and SrTiO3. Phys. Rev. B. 45, 7584–7587 (1992).CrossRefADSGoogle Scholar
  19. Haage, T., Zegenhagen, J., Li, J.Q., Habermeier, H.-U., Cardona, M., Jooss, Ch., Warthmann, R., Forkl, A., Kronmuller, H.: Transport properties and flux pinning by self-organization in YBa2Cu3O7 2d films on vicinal SrTiO3 (001). Phys. Rev. B. 56, 8404–8418 (1997).CrossRefADSGoogle Scholar
  20. Solovyov, V.F., Develos-Bagarinao, K., Li, Q., Qing, J., Zhou, J.: Nature of Y1Ba2Cu3O7 nucleation centers on ceria buffers. Supercond. Sci. Technol. 23, 014008 (2010).CrossRefADSGoogle Scholar
  21. Develos-Bagarinao, K., Yamasaki, H., Nakagawa, Y.: Supercond. Sci. Technol. 19, 873–882 (2006).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. Mihalache
    • 1
  • N. Stefan
    • 2
  • I. Enculescu
    • 1
  • I. N. Mihailescu
    • 2
  • M. Socol
    • 1
  • M. Miroi
    • 2
  1. 1.National Institute of Materials PhysicsBucharest-MagureleRomania
  2. 2.National Institute for Laser, Plasma, and Radiation PhysicsBucharest-MagureleRomania

Personalised recommendations