Skip to main content
Log in

Precise Magnetic Sensors for Navigation and Prospection

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Navigation, position tracking, search for unexploded ammunition, and geophysical prospection of magnetic or conducting ore are key applications where very small magnetic field signatures and field increments should be detected in the presence of the Earth’s magnetic field, typically 50,000 nT. The industry calls for a new generation of portable vectorial magnetic sensors with a precision better than 0.1 nT. This error requirement includes not only sensor noise but also linearity, cross-field error, hysteresis, and perming and also temperature drift of the sensitivity and mainly the offset drift. For application on moving platform, the sensors should also have fast response. We will show that these requirements can be met only by fluxgate sensors. On the other hand, mass market requires cheap, low-power, and small magnetic sensors for portable gadgets; the typical application is compass in mobile phone, with precision of several degrees, corresponding to a 100-nT precision. For these applications, anisotropic magnetoresistance (AMR) sensor is dominant, while integrated fluxgates may penetrate the high-end market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ripka, P., Janosek, M.: Advances in Magnetic Field Sensors. IEEE Sens. J. 10 (6), 1108–1116 (2010)

    Article  Google Scholar 

  2. Li, W., Wang, J.: Magnetic sensors for navigation applications: an overview. J. Navig. 67, 263–275 (2014). doi:10.1017/S0373463313000544

    Article  Google Scholar 

  3. Vyhnanek, J., et al.: Low frequency noise of anisotropic magnetoresistors in DC and AC-excited metal detectors. J. Phys. Conf. Ser. 450, 012031 (2013)

    Article  ADS  Google Scholar 

  4. Zimmermann, E., Verweerd, A., Glaas, W., Tillmann, A., Kemna, A.: An A.M.R. sensor-based measurement system for magnetoelectrical resistivity tomography. IEEE Sensors J. 5 (2), 233–241 (2005)

    Article  Google Scholar 

  5. Honeywell: 3-Axis digital compass IC HMC5883L, datasheet. http://www.adafruit.com/datasheets/HMC5883L_3-Axis_Digital_Compass_IC.pdf

  6. Ripka, P., Janosek, M., Butta, M., Billingsley, S. W., Wakefield, E.: Crossfield error in fluxgate and AMR sensors. J. Electr. Eng. 61 (7/s), 13–16 (2010)

    Google Scholar 

  7. Ripka, P., Butta, M., Platil, A.: Temperature stability of AMR sensors. Sens. Lett. 11, 74–77 (2013)

    Article  Google Scholar 

  8. Vopalensky, M., Platil, A.: Temperature drift of offset and sensitivity in full-bridge magnetoresistive sensors. IEEE Trans. Magn. 49, 136–139 (2013)

    Article  ADS  Google Scholar 

  9. Ioan, C., Tibu, M., Chiriac, H.: Magnetic noise measurement for Vacquier type fluxgate sensor with double excitation. J. Optoelectron. Adv. Mater. 6, 705–708 (2004)

    Google Scholar 

  10. Kubik, J., Pavel, L., Ripka, P., Kaspar, P.: Low-power printed circuit board fluxgate sensor. IEEE Sensors J. 7(1–2), 179–183 (2007)

    Article  Google Scholar 

  11. Kubík, J., Ripka, P.: Racetrack fluxgate sensor core demagnetization factor. Sens. Act. A 143, 237–244 (2008)

    Article  Google Scholar 

  12. Baschirotto, A., Dallago, E., Malcovati, P., et al.: A fluxgate magnetic sensor: from PCB to micro-integrated technology. IEEE Trans. Instrum. Meas. 56 (1), 25–31 (2007)

    Article  Google Scholar 

  13. Drljaca, P. M., Kejik, P., Vincent, F., Piguet, D., Popovic, R. S.: Low-power 2-D fully integrated CMOS fluxgate magnetometer. IEEE Sens. J. 5, 909–915 (2005)

    Article  Google Scholar 

  14. Park, H. S., Hwang, J. S., Choi, W. Y., Shim, D. S., Na, K. W., Choi, S. O.: Development of micro-fluxgate sensors with electroplated magnetic cores for electronic compass. Sens. Actuator A-Phys. 114, 224–2 (2004)

    Article  Google Scholar 

  15. Kyynäräinen, J., Saarilahti, J., Kattelus, H., Meinander, T., Suhonen, M., Oja, A., Seppä, H., Pekko, P., Kuisma, H., Ruotsalainen, S., Tilli, M.: 3D micromechanical compass. Sens. Lett. 5, 126–129 (2007)

    Article  Google Scholar 

  16. Včelák, J., Ripka, P., Platil, A., Kubík, J., Kašpar, P.: Errors of AMR compass and methods of their compensation. Sensors Actuators A 129, 53–57 (2006)

    Article  Google Scholar 

  17. Mohamadabadi, K., Coillot, C., Hillion, M.: New compensation method for cross-axis effect for three-axis AMR sensors. IEEE Sens. J 13, 1355–1362 (2013)

    Article  Google Scholar 

  18. Pang, H., Zhang, Q., Li, J., Luo, S., Chen, D., Pan, M., Luo, F.: Improvement of vector compensation method for vehicle magnetic distortion field. J. Magn. Magn. Mater. 353, 1–5 (2014)

    Article  ADS  Google Scholar 

  19. Wang, Z., Poscente, M., Filip, D., et al.: Rotary in-drilling alignment using an autonomous MEMS-based inertial measurement unit for measurement—while-drilling processes. IEEE Instr. Meas. Magazine 16, 26–34 (2013)

    Article  Google Scholar 

  20. Ripka, P., Zikmund, A., Vcelak, J.: Long-range magnetic tracking. In: Proceeding of the IEEE sensors conference, 2012, doi:10.1109/ICSENS.2012.6411065, pp. 1–4

  21. Včelák, J., Ripka, P., Kubík, J., Platil, A., Kašpar, P.: AMR navigation systems and methods of their calibration. Sensors Actuators A 123–124, 122–128 (2005)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Union, OP RDI project no. CZ.1.05/2.1.00/03.0091, University Centre for Energy Efficient Buildings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Včelák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Včelák, J., Ripka, P. & Zikmund, A. Precise Magnetic Sensors for Navigation and Prospection. J Supercond Nov Magn 28, 1077–1080 (2015). https://doi.org/10.1007/s10948-014-2636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2636-7

Keywords

Navigation