Journal of Superconductivity and Novel Magnetism

, Volume 28, Issue 3, pp 1077–1080 | Cite as

Precise Magnetic Sensors for Navigation and Prospection

Original Paper


Navigation, position tracking, search for unexploded ammunition, and geophysical prospection of magnetic or conducting ore are key applications where very small magnetic field signatures and field increments should be detected in the presence of the Earth’s magnetic field, typically 50,000 nT. The industry calls for a new generation of portable vectorial magnetic sensors with a precision better than 0.1 nT. This error requirement includes not only sensor noise but also linearity, cross-field error, hysteresis, and perming and also temperature drift of the sensitivity and mainly the offset drift. For application on moving platform, the sensors should also have fast response. We will show that these requirements can be met only by fluxgate sensors. On the other hand, mass market requires cheap, low-power, and small magnetic sensors for portable gadgets; the typical application is compass in mobile phone, with precision of several degrees, corresponding to a 100-nT precision. For these applications, anisotropic magnetoresistance (AMR) sensor is dominant, while integrated fluxgates may penetrate the high-end market.


Magnetic sensors Fluxgate Magnetoresistor Navigation Localization 



This work has been supported by the European Union, OP RDI project no. CZ.1.05/2.1.00/03.0091, University Centre for Energy Efficient Buildings.


  1. 1.
    Ripka, P., Janosek, M.: Advances in Magnetic Field Sensors. IEEE Sens. J. 10 (6), 1108–1116 (2010)CrossRefGoogle Scholar
  2. 2.
    Li, W., Wang, J.: Magnetic sensors for navigation applications: an overview. J. Navig. 67, 263–275 (2014). doi: 10.1017/S0373463313000544 CrossRefGoogle Scholar
  3. 3.
    Vyhnanek, J., et al.: Low frequency noise of anisotropic magnetoresistors in DC and AC-excited metal detectors. J. Phys. Conf. Ser. 450, 012031 (2013)CrossRefADSGoogle Scholar
  4. 4.
    Zimmermann, E., Verweerd, A., Glaas, W., Tillmann, A., Kemna, A.: An A.M.R. sensor-based measurement system for magnetoelectrical resistivity tomography. IEEE Sensors J. 5 (2), 233–241 (2005)CrossRefGoogle Scholar
  5. 5.
    Honeywell: 3-Axis digital compass IC HMC5883L, datasheet.
  6. 6.
    Ripka, P., Janosek, M., Butta, M., Billingsley, S. W., Wakefield, E.: Crossfield error in fluxgate and AMR sensors. J. Electr. Eng. 61 (7/s), 13–16 (2010)Google Scholar
  7. 7.
    Ripka, P., Butta, M., Platil, A.: Temperature stability of AMR sensors. Sens. Lett. 11, 74–77 (2013)CrossRefGoogle Scholar
  8. 8.
    Vopalensky, M., Platil, A.: Temperature drift of offset and sensitivity in full-bridge magnetoresistive sensors. IEEE Trans. Magn. 49, 136–139 (2013)CrossRefADSGoogle Scholar
  9. 9.
    Ioan, C., Tibu, M., Chiriac, H.: Magnetic noise measurement for Vacquier type fluxgate sensor with double excitation. J. Optoelectron. Adv. Mater. 6, 705–708 (2004)Google Scholar
  10. 10.
    Kubik, J., Pavel, L., Ripka, P., Kaspar, P.: Low-power printed circuit board fluxgate sensor. IEEE Sensors J. 7(1–2), 179–183 (2007)CrossRefGoogle Scholar
  11. 11.
    Kubík, J., Ripka, P.: Racetrack fluxgate sensor core demagnetization factor. Sens. Act. A 143, 237–244 (2008)CrossRefGoogle Scholar
  12. 12.
    Baschirotto, A., Dallago, E., Malcovati, P., et al.: A fluxgate magnetic sensor: from PCB to micro-integrated technology. IEEE Trans. Instrum. Meas. 56 (1), 25–31 (2007)CrossRefGoogle Scholar
  13. 13.
    Drljaca, P. M., Kejik, P., Vincent, F., Piguet, D., Popovic, R. S.: Low-power 2-D fully integrated CMOS fluxgate magnetometer. IEEE Sens. J. 5, 909–915 (2005)CrossRefGoogle Scholar
  14. 14.
    Park, H. S., Hwang, J. S., Choi, W. Y., Shim, D. S., Na, K. W., Choi, S. O.: Development of micro-fluxgate sensors with electroplated magnetic cores for electronic compass. Sens. Actuator A-Phys. 114, 224–2 (2004)CrossRefGoogle Scholar
  15. 15.
    Kyynäräinen, J., Saarilahti, J., Kattelus, H., Meinander, T., Suhonen, M., Oja, A., Seppä, H., Pekko, P., Kuisma, H., Ruotsalainen, S., Tilli, M.: 3D micromechanical compass. Sens. Lett. 5, 126–129 (2007)CrossRefGoogle Scholar
  16. 16.
    Včelák, J., Ripka, P., Platil, A., Kubík, J., Kašpar, P.: Errors of AMR compass and methods of their compensation. Sensors Actuators A 129, 53–57 (2006)CrossRefGoogle Scholar
  17. 17.
    Mohamadabadi, K., Coillot, C., Hillion, M.: New compensation method for cross-axis effect for three-axis AMR sensors. IEEE Sens. J 13, 1355–1362 (2013)CrossRefGoogle Scholar
  18. 18.
    Pang, H., Zhang, Q., Li, J., Luo, S., Chen, D., Pan, M., Luo, F.: Improvement of vector compensation method for vehicle magnetic distortion field. J. Magn. Magn. Mater. 353, 1–5 (2014)CrossRefADSGoogle Scholar
  19. 19.
    Wang, Z., Poscente, M., Filip, D., et al.: Rotary in-drilling alignment using an autonomous MEMS-based inertial measurement unit for measurement—while-drilling processes. IEEE Instr. Meas. Magazine 16, 26–34 (2013)CrossRefGoogle Scholar
  20. 20.
    Ripka, P., Zikmund, A., Vcelak, J.: Long-range magnetic tracking. In: Proceeding of the IEEE sensors conference, 2012, doi: 10.1109/ICSENS.2012.6411065, pp. 1–4
  21. 21.
    Včelák, J., Ripka, P., Kubík, J., Platil, A., Kašpar, P.: AMR navigation systems and methods of their calibration. Sensors Actuators A 123–124, 122–128 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University Center for Energy Efficient BuildingsCzech Technical UniversityPraha 6Czech Republic
  2. 2.Faculty of Electrical Engineering and University Center for Energy Efficient BuildingsCzech Technical UniversityPraha 6Czech Republic

Personalised recommendations