Skip to main content
Log in

Enhanced Magnetic Properties in Cu0.5Tl0.5Ba2Ca2Cu3O10−δ Superconductor Doped with Carbon Nanotubes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Fluctuation-induced conductivity (FIC) analysis in the critical fluctuation region (cr), three-dimensional (3D), two-dimensional (2D), and zero-dimensional (0D) regions is reported for undoped and carbon nanotubes (CNT)-doped Cu0.5Tl0.5Ba2Ca2Cu3O10−δ (CuTl-1223) superconductors. Samples were synthesized by well-known solid-state reaction method by adding CNT up to 7 wt %. The X-ray diffraction data confirms the single-phase orthorhombic structures following PMMM space group for all the samples. The scanning electron microscope (SEM) images reveal that the carbon nanotubes are present in the spaces between the grains and connect the grains electrically to help the intergranular current flow. From FIC analysis, it was found that the width of critical and 3D regimes are shrunken with the increased CNT doping in the final compound. Also, the coherence length (ξc(0)), the Fermi velocity (V F), and the coupling constant (J) are suppressed with increased CNT doping except for the 0.25 wt % doped sample. The decrease in important superconductivity parameters most likely arises due to low CNT doping which indeed functions as columnar defects that are produced by heavy ion irradiation. In this analysis, we also found that the critical magnetic fields (B c(0), B c1(0)) and critical current density (J c(0)) were found to increase with increased CNT concentration. These observations suggest that addition of CNT (efficient pinning centers) to CuTl-1223 compounds improve the electrical connection between the superconducting grains to result in the improvement of magnetic properties of the final compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mori, N., John, A.W., Ozaki, H.: Phys. Rev. B 45(10), 633 (1992)

    Google Scholar 

  2. Upreti, U.C., Narlikar, A.V.: Solid State Comm. 100, 615 (1996)

    Article  ADS  Google Scholar 

  3. Solovjov, A.L., Dmitriev, V.M.: Low Temp. Phys. 35, 169 (2009)

    Article  ADS  Google Scholar 

  4. Solovjov, A.L., Dmitriev, V.M.: Low Temp. Phys. 32, 99 (2006)

    Article  ADS  Google Scholar 

  5. De, U., Mandal, K., Sanyal, D., Majumdar, C.K.: Physica. C 339, 113 (2000)

    Article  ADS  Google Scholar 

  6. Sato, T., Nakane, H., Yamazaki, S., Mori, N., Hirano, S., Yoshizawa, S., Yamaguchi, T.: Physica. C 392-396, 643 (2003)

    Article  ADS  Google Scholar 

  7. Solovjov, A.L., Dmitriev, V.M., Habermeier, H.-U.: Phys. Rev. B 55, 85–51 (1997)

    Article  Google Scholar 

  8. Aslamazov, L.G., Larkin, A.L.: Phys. Lett. A 26, 238 (1968)

    Article  ADS  Google Scholar 

  9. Lawrence, W.E., Doniach, S.: In: Kanda, E. (ed.) Proceedings of the Twelfth International Conference on Low Temperature Physics, p. 361, Keigaku, Tokyo (1971)

  10. Han, S.H., Brantse, I., Axnas, J., Zhao, B.R., Rapp, O.: Physica. C 388-389, 349 (2003)

    Article  ADS  Google Scholar 

  11. Sharma, S.V., Sinha, G., Nath, T.K., Chakraborty, S., Majumdar, A.K.: Physica. C 242, 351 (1995)

    Article  ADS  Google Scholar 

  12. Hikami, S., Larkin, A.I.: Mod. Phys. Lett. B 2, 693 (1988)

    Article  ADS  Google Scholar 

  13. Oh, B., Char, K., Kent, A.D., Naito, M., Beasley, M.R., Geballe, T.H., Hammond, R.H., Kapitulnik, A., Grabeal, J.M.: Phys. Rev. B 37, 78–61 (1988)

    Google Scholar 

  14. Ghosh, A.K., Bandyopadhyay, S.K., Barat, P., Sen, P., Basu, A.N.: Physica. C 264, 255 (1996)

    Article  ADS  Google Scholar 

  15. Maki, K.: Prog. Theor. Phys. 39, 897 (1968)

    Article  ADS  Google Scholar 

  16. Thompson, R.S.: Phys. Rev. B 1, 327 (1970)

    Article  ADS  Google Scholar 

  17. Vidal, F., Veira, J.A., Maza, J., Garcia-Alvarado, F., Moran, M., Alario, M.A.: J. Phys. C: Solid state Phys. 21, L599 (1988)

    Article  ADS  Google Scholar 

  18. Han, S.H., Rapp, O.: Solid State Commun. 94, 661 (1995)

    Article  ADS  Google Scholar 

  19. Abou Aly, A.I., Ibrahim, I.H., Awad, R.A., El-Harizy, A.: J. Supercond. Nov. Magn. 23, 13–25 (2010)

    Article  Google Scholar 

  20. Rojas Sarmiento, M.P., Oribe Laverde, M.A., Vera Lopez, E., Landinez, D.A, Roa-Rojas, J.: Physica. B 398, 360 (2007)

    Article  ADS  Google Scholar 

  21. Ihara, H., Iyo, A., Tanaka, K., Tokiwa, K., Ishida, K., Terada, N., Tokumoto, M., Sekita, Y., Tsukamoto, T., Watanabe, T., Umeda, M.: Physica. C 282-287, 19–73 (1997)

    Article  Google Scholar 

  22. James, F.: Annett: Superconductivity, Superfluids and Condensates. 1st edn. Oxford University Press (2004)

  23. Fossheim, K., Tuset, E.D., Ebbesen, T.W., Treacy, M.M.J., Schwartz, J.: Physica. C 248, 195 (1995)

    Article  ADS  Google Scholar 

  24. Huang, S., Koblischka, M.R., Fossheim, K., Ebbesen, T.W., Johansen, T.H.: Physica. C 311, 172 (1999)

    Article  ADS  Google Scholar 

  25. Ebbesen, T.W., Ajayan, P.M.: Nature 358, 220 (1992)

    Article  ADS  Google Scholar 

  26. Ebbesen, T.W., Rev, A.: Mater. Sci. 24, 235 (1994)

    Article  Google Scholar 

  27. Nawazish, A.K., Sadaf, A.: J. Alloys Compd. 538, 183 (2012)

    Article  Google Scholar 

  28. Arpita Vajpayee, V.P.S., Awana, S., Yuc, G.L., Bhalla, H.K.: Physica. C 470, 653 (2010)

    Article  Google Scholar 

  29. Nawazish A., Qurat-ul-Ain, K., Firdous, U., Shaheryar: J. Appl. Phys. 111, 033–917 (2012)

  30. Nawazish, A., Khan, A.A.K., Firdous, U., Ullah, S., Khan, S.: Physica. C 474, 29 (2012)

    Article  ADS  Google Scholar 

  31. Ali Yusuf, A., Yahya, A.K., Nawazish, A., Khan, F., Salleh, Md., Marsom, E., Huda, N.: Physica. C 471, 363 (2011)

    Article  ADS  Google Scholar 

  32. Solovjov, A.L., Habermeier, H.-U., Haage, T.: Fiz Nizk. Temp. 28 (2002) 24 [Low Temp. Phys. 28 (2002) 17]

  33. Solovjov, A.L.: Temp. Low. Phys 28, 99 (2002)

    Article  ADS  Google Scholar 

  34. Rahim, M., Ullah, K., Khan, N.A.: J. Supercond. Nov. Magn. 25, 975 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The Higher Education Commission of Pakistan (HEC) through project no. 20-1482/R&D/09-1472 and International Center for Theoretical Physics (ICTP) through project number PRJ-27 are acknowledged for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmul Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, M.A., Aziz, S., Hassan, N. et al. Enhanced Magnetic Properties in Cu0.5Tl0.5Ba2Ca2Cu3O10−δ Superconductor Doped with Carbon Nanotubes. J Supercond Nov Magn 27, 2427–2434 (2014). https://doi.org/10.1007/s10948-014-2617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2617-x

Keywords

PACS codes

Navigation