Superconductivity at 25 K under Hydrostatic Pressure for FeTe 0 . 5 Se 0 . 5 Superconductor

  • Rajveer Jha
  • Rayees A. Zargar
  • A. K. Hafiz
  • H. Kishan
  • V. P. S. Awana


We report the impact of hydrostatic pressure on the superconductivity and normal-state resistivity of FeTe0.5Se0.5 superconductor. At the ambient pressure, the FeTe0.5Se0.5 compound shows the superconducting transition temperature \(T_{\mathrm {c}}^{\text {onset}} \) at above 13 K and \(T_{\mathrm {c}}^{\rho =0} \) at 11.5 K. We measure pressure-dependent resistivity from 250 to 5 K, which shows that the normal-state resistivity increases initially for the applied pressures of up to 0.55 GPa, and then the same is decreased monotonically with increasing pressure of up to 1.97 GPa. On the other hand, the superconducting transition temperatures (\(T_{\mathrm {c}}^{\text {onset}} \) and \(T_{\mathrm {c}}^{\rho =0} )\) increase monotonically with increasing pressure. Namely the \(T_{\mathrm {c}}^{\text {onset}} \) increases from 13 to 25 K and \(T_{\mathrm {c}}^{\rho =0} \) from 11.5 to 20 K for the pressure range of 0–1.97 GPa. Our results suggest that superconductivity in this class of Fe-based compounds is very sensitive to pressure as the estimated pressure coefficient d T c(onset)/dP is ∼5.8 K/GPa. It may be suggested that the FeTe0.5Se0.5 superconductor is a strong electron-correlated system. The enhancement of T c with applying pressure is mainly attributed to an increase of charge carriers at the Fermi surface.


Fe-chalcogenide Hydrostatic pressure High-pressure resistivity Strong electron correlation effects 



The authors would like to thank the Director of NPL, India, for his keen interest in the present work. This work is financially supported by DAE-SRC outstanding investigator award scheme on search for new superconductors. Rajveer Jha acknowledges the CSIR for the senior research fellowship. H. Kishan thanks CSIR for providing Emeritus Scientist Fellowship.


  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  2. 2.
    Chen, X.H., Wu, T.G., Wu, R., Liu, H., Chen, H., Fang, D.F.: Nature 453, 761 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Chen, G.F., Li, Z., Wu, D., Li, G., Hu, W.Z., Dong, J., Zheng, P., Luo, J.L., Wang, N.L.: Phys. Rev. Lett. 100, 247002 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Ren, Z.A., Yang, J., Lu, W., Yi, W., Xhen, X.-L., Li, Z.-C., Che, G.-C., Dong, X.-L., Sun, L.-L., Zhou, F., Zhao, Z.-X.: Europhys. Lett. 82, 57002 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Ren, Z.A., Yang, J., Lu, W., Yi, W., Che, G.-C., Dong, X.L., Sun, L.L., Zhao, Z.X.: Mater. Res. Innovat. 12, 105 (2008)CrossRefGoogle Scholar
  6. 6.
    Rotter, M., Tegel, M., Johrendt, D.: Phys. Rev. Lett. 101, 107006 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Wang, X.C., Liu, Q.Q., Lv, Y.X., Gao, W.B., Yang, L.X., Yu, R.C., Li, F.Y., Jin, C.Q.: Solid State Commun. 148, 538 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W. Wu, Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yang, D.C., Wu, M.K.: Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Bednorz, J.G., Muller, K.A.: Z. Phys. B 64, 189 (1986)CrossRefADSGoogle Scholar
  10. 10.
    de la Cruz, C., Huang, Q., Lynn, J.W., Li, J., Ratcliff II W., Zarestky, J.L., Mook, H.A., Chen, G.F., Luo, J.L., Fang, Z., Wang, N.L., Dai, P.: Nature 453, 899 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Singh, D.J., Du, M.-H.: Phys. Rev. Lett. 100, 237003 (2008)CrossRefADSGoogle Scholar
  12. 12.
    Dong, J., Zhang, H.J., Xu, G., Li, Z., Li, G., Hu, W.Z., Wu, D., Chen, G.F., Dai, X., Lou, J.L., Fang, Z., Wang, N.L.: Europhys. Lett. 83, 27006 (2008)CrossRefADSGoogle Scholar
  13. 13.
    McQueen, T.M., Huang, Q., Ksenofontov, V., Felser, C., Xu, Q., Cava, R.J.: Phys. Rev. B 79, 014522 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T.: Appl. Phys. Lett. 93, 152505 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Fang, M.H., Pham, H.M., Qian, B., Liu, T.J., Vehstedt, E.K., Liu, Y., Spinu, L., Mao, Z.Q.: Phys. Rev. B 78, 224503 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Awana, V.P.S., Pal, A., Vajpayee, A., Mudgel, M., Kishan, H., Husain, M., Zeng, R., Yu, S., Guo, Y.F., Shi, Y.G., Yamaura, K., Muromachi, E.T.: J. Appl. Phys. 107, 09E128 (2010)Google Scholar
  17. 17.
    Kumar, R.S., Zhang, Y., Awana, V.P.S., Kumar, A., Xiao, Y., Sinegeikin, S., Chow, P., Cornleius, A., Chen, C., Zhao, Y.: J. Phys. Chem. Solids (2014). (In press)Google Scholar
  18. 18.
    Kumar, R.S., Zhang, Y., Sinogeikin, S., Xiao, Y., Kumar, S., Chow, P., Cornelius, A.L., Chen, C.: J. Phys. B 113, 12597 (2010)Google Scholar
  19. 19.
    Malavi, P.S., Karmakar, S., Patel, N.N., Bhatt, H., Sharma, S.M.: J. Phys. Condens. Matter 26, 125701 (2014)CrossRefGoogle Scholar
  20. 20.
    Huang, C.L., Chou, C.C., Tseng, K.F., Huang, Y.L., Hsu, F.C., Yeh, K.W., Wu, M.K., Yang, H.D.: J. Phys. Soc. Japan 78, 084710 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rajveer Jha
    • 1
  • Rayees A. Zargar
    • 2
  • A. K. Hafiz
    • 2
  • H. Kishan
    • 1
  • V. P. S. Awana
    • 1
  1. 1.CSIR-National Physical LaboratoryDr. K.S. Krishnan MargNew DelhiIndia
  2. 2.Department of PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations