Advertisement

The Study of Purity Improvement on Tl-1223 Thin Films by DC Sputtering and Post-annealing Method

  • X. X. Gao
  • W. Xie
  • Z. Wang
  • X. J. Zhao
  • M. He
  • X. Zhang
  • S. L. Yan
  • L. Ji
Original Paper

Abstract

Un-substituted TlBa2Ca2Cu3O x (Tl-1223)-superconducting thin films have been fabricated on a LaAlO3 (001) substrate in oxygen by using a two-step method, which includes direct current (DC) magnetron sputtering and post-annealing process. Thallium (Tl) content in amorphous precursor films is found to be important to the crystallization of Tl-superconducting phase. Using the nominal composition of Tl1+δ Ba2Ca2Cu3 O 8 (δ = 0.1∼0.2) precursor films, the formation is promoted to Tl-1223 and Tl-2223 phase rather than Tl-1212 and Tl-1223 phase with accompanying Tl-rich source pellets. When the annealing process continues, Tl-2223 phase will be converted to Tl-1223 phase at a suitable annealing time and temperature. From the X-ray diffraction pattern, only Tl-1223 (00l) peaks are observed, which shows that the purity of Tl-1223 film is improved significantly by this method. The critical temperature T c of Tl-1223 film is characterized at 110 K, and the critical current density J c (77 K, T = 0) is up to 1.5 MA/cm2.

Keywords

Superconductor Tl-1223 Purity Anneal 

Notes

Acknowledgments

Author acknowledges the support from the National Natural Science Foundation of China (51002081) and the Fundamental Research Funds for the Central Universities of China for this work.

References

  1. 1.
    Rao, C.N.R., Nagarajan, R., Vijayaraghaven, R.: Supercond. Sci. Technol. 6, 1 (1993)CrossRefADSGoogle Scholar
  2. 2.
    Siegal, M.P., Venturini, E.L., Morosin, B., Aselage, T.L.: J. Mater. Res. 12, 2825 (1997)CrossRefADSGoogle Scholar
  3. 3.
    Kim, D.H., Gray, K.E., Kampwirth, R.T., et al.: Physica C 177, 431 (1991)CrossRefADSGoogle Scholar
  4. 4.
    Tkaczyk, J.E., DeLuca, J.A., Karas, P.L., et al.: Appl. Phys. Lett. 61, 610 (1992)CrossRefADSGoogle Scholar
  5. 5.
    Yan, S.L., Fang, L., Song, Q.X., et al.: Appl. Phys. Lett. 63, 1845 (1993)CrossRefADSGoogle Scholar
  6. 6.
    Yan, S.L., Fang, L., Si, M.S., et al.: Supercond. Sci. Technol. 7, 681 (1994)CrossRefADSGoogle Scholar
  7. 7.
    Siegal, M.P., Venturini, E.L., Newcomer, P.P., et al.: J. Appl. Phys. 78, 7186 (1995)CrossRefADSGoogle Scholar
  8. 8.
    Juang, J.Y., Horng, J.H., Chen, S.P., et al.: Appl. Phys. Lett. 66, 885 (1995)CrossRefADSGoogle Scholar
  9. 9.
    Guerfi, T., et al.: Thin Solid Films 518, 4986 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Ji, L., et al.: Supercond. Sci. Technol. 20, 1173 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Liu, R.S., Zheng, D.N., Loram, J.W., et al.: Appl. Phys. Lett. 60, 1019 (1992)CrossRefADSGoogle Scholar
  12. 12.
    Vinokur, V.M., Kes, P.H., Koshelev, A.E.: Physica C 168, 29 (1990)CrossRefADSGoogle Scholar
  13. 13.
    Ren, Z.F., Wang, C.A., Wang, J.H.: Appl. Phys. Lett. 65, 237 (1994)CrossRefADSGoogle Scholar
  14. 14.
    Heiml, O., Gritzner, G.: Supercond. Sci. Technol. 15, 956 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Auinger, M., et al.: Supercond. Sci. Technol. 20, 704 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Hopfinger, T., et al.: Physica C 351, 53 (2001)CrossRefADSGoogle Scholar
  17. 17.
    Ji, L., et al.: Supercond. Sci. Technol. 19, 338 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • X. X. Gao
    • 1
  • W. Xie
    • 1
  • Z. Wang
    • 1
    • 2
  • X. J. Zhao
    • 1
  • M. He
    • 1
  • X. Zhang
    • 1
  • S. L. Yan
    • 1
  • L. Ji
    • 1
  1. 1.Department of ElectronicsNankai UniversityTianjinChina
  2. 2.Purple Mountain Observatory, CASNanjingChina

Personalised recommendations