Advertisement

A First Principles Study of the Electronic Structures and Tetragonal Distortion of the Ti2NiGa Heusler Alloy

  • H. M. Huang
  • S. J. Luo
  • K. L. Yao
Original Paper

Abstract

The electronic structures and tetragonal distortion for the full Heusler compound Ti2NiGa have been studied by first principles calculations. The results predict that Ti2NiGa presents half-metallicity within the lattice constants range of 5.70 to 6.50 Å together with the integral magnetic moment 3.00μ B . The total magnetic moment (M t ) and the number of valence electrons (Z t ) of Ti2NiGa obey the Slater–Pauling (SP) rule of M t =Z t −18 very well. The results of tetragonal distortion indicate that the half-metallicity of Ti2NiGa alloy can be retained in the range of the c/a ratio from 0.85 to 1.20. Ti(A) atom has dominating contribution to the magnetism of Ti2NiGa even when the lattice constant and the structure experience large change. In the presence of vacancy defects, Ti2NiGa can still maintain half-metallicity.

Keywords

First principles Heusler alloy Half-metallicity Tetragonal distortion 

Notes

Acknowledgement

This work was supported by Scientific Research Items Foundation of Hubei Educational Committee (grant no. Q20131805).

References

  1. 1.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488–1495 (2001) CrossRefADSGoogle Scholar
  2. 2.
    Zhao, Y.H., Zhao, G.P., LIu, Y., Liu, B.G.: Phys. Rev. B 80, 224417 (2009) CrossRefADSGoogle Scholar
  3. 3.
    De Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024–2027 (1983) CrossRefADSGoogle Scholar
  4. 4.
    Luo, S.J., Yao, K.L.: Phys. Rev. B 67, 214429 (2003) CrossRefADSGoogle Scholar
  5. 5.
    Liu, Y., Bose, S.K., Kudrnovsky, J.: Phys. Rev. B 82, 094435 (2010) CrossRefADSGoogle Scholar
  6. 6.
    Zhang, C.W., Yan, S.S.: J. Appl. Phys. 107, 043913 (2010) CrossRefADSGoogle Scholar
  7. 7.
    Zhao, Y.H., Li, Y.F., Liu, Y.: Appl. Phys. Lett. 100, 092407 (2012) CrossRefADSGoogle Scholar
  8. 8.
    Liu, Y., Bose, S.K., Kudrnovsky, J.: J. Appl. Phys. 112, 053902 (2012) CrossRefADSGoogle Scholar
  9. 9.
    Lakdja, A., Mesri, D., Rozale, H., Chahed, A., Ruterana, P.: Phys. Status Solidi B 249, 2222–2226 (2012) CrossRefADSGoogle Scholar
  10. 10.
    Fan, S.W., Ding, L.J., Wang, Z.L., Yao, K.L.: Appl. Phys. Lett. 102, 022404 (2013) CrossRefADSGoogle Scholar
  11. 11.
    Dahmane, F., Tadjer, A., Doumi, B., Mesri, D., Aourag, H.: J. Supercond. Nov. Magn. 26, 3349–33348 (2013) CrossRefGoogle Scholar
  12. 12.
    Cossu, F., Singh, N., Schwingenschlögl, U.: Appl. Phys. Lett. 102, 042401 (2013) CrossRefADSGoogle Scholar
  13. 13.
    Barth, J., Fecher, G.H., Balke, B., Ouardi, S., Graf, T., Felser, C.: Phys. Rev. B 81, 064404 (2010) CrossRefADSGoogle Scholar
  14. 14.
    Rai, D.P., Thapa, R.K.: J. Alloys Compd. 542, 257–263 (2012) CrossRefGoogle Scholar
  15. 15.
    Bonilla, M., Téllez, D.A., Rojas, J., Rodríguez, J.A., Fajardo, F.: J. Supercond. Nov. Magn. 26, 2307–2312 (2013) CrossRefGoogle Scholar
  16. 16.
    Rai, D.P., Thapa, R.K.: J. Supercond. Nov. Magn. 26, 3507–3513 (2013) CrossRefGoogle Scholar
  17. 17.
    Makinistian, L., Faiz, M.M., Panguluri, R.P., Balke, B., Wurmehl, S., Felser, C., Albanesi, E.A., Petukhov, A.G., Nadgorny, B.: Phys. Rev. B 87, 220402 (2013) CrossRefADSGoogle Scholar
  18. 18.
    Xu, B., Zhang, M., Yan, H.: Phys. Status Solidi B 248, 2870–2876 (2011) CrossRefADSGoogle Scholar
  19. 19.
    Qawasmeh, Y., Hamad, B.: J. Appl. Phys. 111, 033905 (2012) CrossRefADSGoogle Scholar
  20. 20.
    Kervan, N., Kervan, S.: J. Phys. Chem. Solids 72, 1358–1361 (2011) CrossRefADSGoogle Scholar
  21. 21.
    Kervan, S., Kervan, N.: Solid State Commun. 151, 1162–1164 (2011) CrossRefADSGoogle Scholar
  22. 22.
    Kervan, N., Kervan, S.: Intermetallics 37, 88–91 (2013) CrossRefGoogle Scholar
  23. 23.
    Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  24. 24.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Comput. Phys. Commun. 59, 399–415 (1990) CrossRefADSGoogle Scholar
  25. 25.
    Kandpal, H.C., Fecher, G.H., Felser, C.: J. Phys. D, Appl. Phys. 40, 1507 (2007) CrossRefADSGoogle Scholar
  26. 26.
    Wei, X.P., Deng, J.B., Mao, G.Y., Chu, S.B., Hu, X.R.: Intermetallics 29, 86–91 (2012) CrossRefGoogle Scholar
  27. 27.
    Liu, B.G.: Phys. Rev. B 57, 172411 (2003) CrossRefADSGoogle Scholar
  28. 28.
    Huang, H.M., Luo, S.J., Yao, K.L.: J. Magn. Magn. Mater. 324, 2560–2564 (2012) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of ScienceHubei University of Automotive TechnologyShiyanP.R. China
  2. 2.School of PhysicsHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations