Structural and Magnetic Properties of Nanocrystalline Lithium–Zinc Ferrite Synthesized by Microwave-Induced Glycine–Nitrate Process

  • N. Borhan
  • K. Gheisari
Original Paper


In this study, nanocrystalline Li–Zn ferrites with the chemical composition Li0.5Zn x Fe2.5−x O4 (where x=0, 0.1,0.2,0.3,0.4,0.5) were synthesized by the glycine–nitrate process using glycine as a fuel, nitrate as an oxidizer and microwave oven as a heat source. The combustion reaction was studied by differential thermal analysis and thermogravimetry. The experimentally determined combustion reaction is extremely exothermic and it occurs at 170 C. The as-synthesized powders were characterized by X-ray diffraction technique. X-ray diffraction data shows that nanocrystalline Li–Zn ferrite powders with a spinel structure have been formed successfully in all samples. Morphological studies using scanning electron microscopy and field emission scanning electron microscopy show agglomerated clusters with a lot of pores attributed to the large amount of gases released during the combustion synthesis with the particle size of 20–40 nm. The magnetic measurements on the as-synthesized powders and compacted samples were carried out using a vibrating sample magnetometer and an inductance/capacitance/resistance meter, respectively. Saturation magnetization increases with the increase in zinc concentration up to x=0.2 and then it decreases with the increase in the zinc content. In addition, maximum magnetic permeability also obtained for the sample with x=0.2 at different frequencies.


Li–Zn ferrite Glycine–nitrate process Nanocrystalline Saturation magnetization Permeability Loss factor 



The authors would like to thank the Shahid Chamran University for providing support to this research through the Grant 91-4-06-636410. The authors are indebted to Dr. Ranjbar, Dr. Saemi and S. Tahanzadeh for their great assistance. We also would like to thank H. Mohseni and S. Hajarpour who gave us excellent advices.


  1. 1.
    Hankare, P.P., Patil, R.P., Sankpal, U.B., Garadkar, K.M., Sasikala, R., Tripathi, A.K., Mulla, I.S.: Magnetic, dielectric and complex impedance spectroscopic studies of nanocrystalline Cr substituted Li-ferrite. J. Magn. Magn. Mater. 322, 2629–2633 (2010) CrossRefADSGoogle Scholar
  2. 2.
    Mazen, S.A., Dawoud, H.A.: Temperature and composition dependence of dielectric properties in Li–Cu ferrite. Mater. Chem. Phys. 82, 557–566 (2003) CrossRefGoogle Scholar
  3. 3.
    Fu, Y.P., Hsu, C.S.: Li0.5Fe2.5−xMnxO4 ferrite sintered from microwave-induced combustion. Solid State Commun. 134, 201–206 (2005) CrossRefADSGoogle Scholar
  4. 4.
    Manjura Hoque, S., Samir Ullah, M., Khan, F.A., Hakim, M.A., Saha, D.K.: Structural and magnetic properties of Li–Cu mixed spinel ferrites. Physica B, Condens. Matter 406, 1799–1804 (2011) CrossRefADSGoogle Scholar
  5. 5.
    Fu, Y.P.: Microwave-induced combustion synthesis of Li0.5Fe2.5−xCrxO4 powder and their characterization. Mater. Res. Bull. 41, 809–816 (2006) CrossRefGoogle Scholar
  6. 6.
    Watawe, S.C., Sarwade, B.D., Bellad, S.S., Sutar, B.D., Chougule, B.K.: Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214, 55–60 (2000) CrossRefADSGoogle Scholar
  7. 7.
    Akhter, S., Hakim, M.A.: Magnetic properties of cadmium substituted lithium ferrites. Mater. Chem. Phys. 120, 399–403 (2010) CrossRefGoogle Scholar
  8. 8.
    Soibam, I., Phanjoubam, S., Sharma, H.B., Sarma, H.N.K., Prakash, C.: Magnetic studies of Li–Zn ferrites prepared by citrate precursor method. Physica B, Condens. Matter 404, 3839–3841 (2009) CrossRefADSGoogle Scholar
  9. 9.
    Ravinder, D.: Far-infrared spectral studies of mixed lithium–zinc ferrites. Mater. Lett. 40, 205–208 (1999) CrossRefGoogle Scholar
  10. 10.
    Reddy, P.V.B., Reddy, V.R., Gupta, A., Gopalan, R., Reddy, C.G.: Mössbauer study of nano-crystalline Li–Zn ferrites. Hyperfine Interact. 183, 253–258 (2008) CrossRefGoogle Scholar
  11. 11.
    Jiang, X.N., Lan, Z.W., Yu, Z., Liu, P.Y., Chen, D.Z., Liu, C.Y.: Sintering characteristics of Li–Zn ferrites fabricated by a sol–gel process. J. Magn. Magn. Mater. 321, 52–55 (2009) CrossRefADSGoogle Scholar
  12. 12.
    Snelling, E.C.: Ferrites for Inductors and Transformers. Research Studies Press, New York (1983) Google Scholar
  13. 13.
    Gheisari, K., Bhame, S.D., Oh, J.T., Javadpour, S.: Comparative studies on the structure and magnetic properties of Ni–Zn ferrite powders prepared by glycine–nitrate auto-combustion process and solid state reaction method. J. Supercond. Nov. Magn. 26, 477–483 (2013) CrossRefGoogle Scholar
  14. 14.
    Patil, K.C., Hegde, M.S.: Chemistry of Nanocrystalline Oxide Materials. World Scientific Publishing Co. Pte. Ltd., London (2008) CrossRefGoogle Scholar
  15. 15.
    Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J.: Glycine–nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 6–12 (1990) CrossRefGoogle Scholar
  16. 16.
    Hajarpour, S., Gheisari, Kh., Honarbakhsh Raouf, A.: Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine–nitrate combustion process. J. Magn. Magn. Mater. 329, 165–169 (2013) CrossRefADSGoogle Scholar
  17. 17.
    Mirshekari, G.R., Daee, S., Mohseni, H., Torkian, S., Ghasemi, M., Ameriannejad, M., Hoseinizade, M., Pirnia, M., Pourjafar, D., Pourmahdavi, M., Gheisari, K.: Structure and magnetic properties of Mn–Zn ferrite synthesized by glycine–nitrate auto-combustion process. Adv. Mater. Res. 409, 520–525 (2012) CrossRefGoogle Scholar
  18. 18.
    Mohseni, H., Shokrollahi, H., Sharifi, I., Gheisari, Kh.: Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine–nitrate process. J. Magn. Magn. Mater. 324, 3741–3747 (2012) CrossRefADSGoogle Scholar
  19. 19.
    Sertkol, M., Köseoglu, Y., Baykal, A., Kavas, H., Bozkurt, A., Toprak, M.S.: Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloys Compd. 486, 325–329 (2009) CrossRefGoogle Scholar
  20. 20.
    Costa, A.C.F.M., Vieira, D.A., Silva, V.J., Diniz, V.C.S., Kiminami, R.H.G.A., Gama, L.: Synthesis of the Ni–Zn–Sm ferrites using microwaves energy. J. Alloys Compd. 483, 37–39 (2009) CrossRefGoogle Scholar
  21. 21.
    Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, 9th edn. Wiley, Hoboken (2011) MATHGoogle Scholar
  22. 22.
    Yue, Z., Zhou, J., Wang, X., Gui, Z., Li, L.: Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol–gel auto-combustion process. J. Eur. Ceram. Soc. 23, 189–193 (2003) CrossRefGoogle Scholar
  23. 23.
    Yue, Z., Zhou, J., Li, L., Zhang, H., Gui, Z.: Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 208, 55–60 (2000) CrossRefADSGoogle Scholar
  24. 24.
    Graef, M.D., McHenry, M.E.: Structure of Materials: an Introduction to Crystallography, Diffraction, and Symmetry. Cambridge University Press, Cambridge (2007) MATHGoogle Scholar
  25. 25.
    Hankare, P.P., Kadam, M.R., Patil, R.P., Garadkar, K.M., Sasikala, R., Tripathi, A.K.: Effect of zinc substitution on structural and magnetic properties of copper ferrite. J. Alloys Compd. 501, 37–41 (2010) CrossRefGoogle Scholar
  26. 26.
    Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R Rep. 45, 1–88 (2004) CrossRefGoogle Scholar
  27. 27.
    Sharma, S., Verma, K., Chaubey, U., Singh, V., Mehta, B.R.: Influence of Zn substitution on structural, microstructural and dielectric properties of nanocrystalline nickel ferrites. Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 167, 187–192 (2010) CrossRefGoogle Scholar
  28. 28.
    Goldman, A.: Modern Ferrite Technology, 2nd edn. Springer, New York (2006) Google Scholar
  29. 29.
    Shen, Y., Hng, H.H., Oh, J.T.: Synthesis and characterization of high-energy ball milled Ni–15%Fe–5%Mo. J. Alloys Compd. 379, 266–271 (2004) CrossRefGoogle Scholar
  30. 30.
    Kumar, G., Chand, J., Dogra, A., Kotnal, R.K., Singh, M.: Improvement in electrical and magnetic properties of mixed Mg–Al–Mn ferrite system synthesized by citrate precursor technique. J. Phys. Chem. Solids 71, 375–380 (2010) CrossRefADSGoogle Scholar
  31. 31.
    Haque, M.M., Huq, M., Hakim, M.A.: Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg–Cu–Zn ferrites. J. Magn. Magn. Mater. 320, 2792–2799 (2008) CrossRefADSGoogle Scholar
  32. 32.
    Akther Hossain, A.K.M., Mahmud, S.T., Seki, M., Kawai, T., Tabata, H.: Structural, electrical transport, and magnetic properties of Ni1−xZnxFe2O4. J. Magn. Magn. Mater. 312, 210–219 (2007) CrossRefADSGoogle Scholar
  33. 33.
    Gutiérrez-López, J., Rodriguez-Senín, E., Pastor, J.Y., Paris, M.A., Martín, A., Levenfeld, B., Várez, A.: Microstructure, magnetic and mechanical properties of Ni–Zn ferrites prepared by powder injection moulding. Powder Technol. 210, 29–35 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations