Advertisement

Cold Rydberg Atoms for Quantum Simulation of Exotic Condensed Matter Interactions

  • J. P. Hague
  • S. Downes
  • C. MacCormick
  • P. E. Kornilovitch
Original Paper

Abstract

Quantum simulators could provide an alternative to numerical simulations for understanding minimal models of condensed matter systems in a controlled way. Typically, cold atom systems are used to simulate e.g., Hubbard models. In this paper, we discuss a range of exotic interactions that can be formed when cold Rydberg atoms are loaded into optical lattices with unconventional geometries, such as long-range electron–phonon interactions and extended Coulomb-like interactions. We show how these can lead to proposals for quantum simulators for complex condensed matter systems such as superconductors. Continuous time quantum Monte Carlo is used to compare the proposed schemes with the physics found in traditional condensed matter Hamiltonians for systems such as high temperature superconductors.

Keywords

Superconductivity Stripes Quantum simulators 

References

  1. 1.
    Schneider, U., Hackermuller, L., Will, S., Best, T., Bloch, I., Costi, T.A., Helmes, R.W., Rasch, D., Rosch, A.: Science 322, 1520 (2008) CrossRefADSGoogle Scholar
  2. 2.
    Jördens, R., Strohmaier, N., Gunter, K., Moritz, H., Esslinger, T.: Nature 455, 204 (2008) CrossRefADSGoogle Scholar
  3. 3.
    Schauss, P., Cheneau, M., Endres, M., Fukuhara, T., Hild, S., Omran, A., Pohl, T., Gross, C., Kuhr, S., Bloch, I.: Nature 491, 87 (2012) CrossRefADSGoogle Scholar
  4. 4.
    Porras, D., Cirac, J.I.: Phys. Rev. Lett. 92, 207901 (2004) CrossRefADSGoogle Scholar
  5. 5.
    Müller, M., Liang, L., Lesanovsky, I., Zoller, P.: New J. Phys. 10, 093009 (2008) CrossRefGoogle Scholar
  6. 6.
    Li, W., Lesanovsky, I.: Phys. Rev. Lett. 108, 023003 (2012) CrossRefADSGoogle Scholar
  7. 7.
    Hague, J., MacCormick, C.: New J. Phys. 14, 033019 (2012) CrossRefADSGoogle Scholar
  8. 8.
    Herrera, F., Krems, R.V.: Phys. Rev. A 84, 051401 (2011) CrossRefADSGoogle Scholar
  9. 9.
    Herrera, F., Madison, K., Krems, R.V., Berciu, M.: Phys. Rev. Lett. (2013) (in press). doi: 10.1103/PhysRevLett.110.223002 Google Scholar
  10. 10.
    Hague, J., MacCormick, C.: Phys. Rev. Lett. 109, 223001 (2012) CrossRefADSGoogle Scholar
  11. 11.
    Henderson, K., Ryu, C., MacCormick, C., Boshier, M.: New J. Phys. 11, 043030 (2009) CrossRefADSGoogle Scholar
  12. 12.
    Bloch, I., Dalibard, J., Zwerger, W.: Rev. Mod. Phys. 80, 885 (2008) CrossRefADSGoogle Scholar
  13. 13.
    Hague, J., Kornilovitch, P.: Phys. Rev. B 80, 054301 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. P. Hague
    • 1
  • S. Downes
    • 1
  • C. MacCormick
    • 1
  • P. E. Kornilovitch
    • 2
  1. 1.Department of Physical SciencesThe Open UniversityMilton KeynesUK
  2. 2.Hewlett-Packard CompanyCorvallisUSA

Personalised recommendations