Advertisement

Structural, Thermal, and Magnetic Properties of Cu-doped BiFeO3

  • Yongtao Li
  • Yunwu Fan
  • Hongguang Zhang
  • Xiaoxue Teng
  • Xueguang Dong
  • Hao Liu
  • Xiaopeng Ge
  • Qi Li
  • Wei Chen
  • Xing’ao Li
  • Zhiyong Ge
Original Paper

Abstract

A polycrystalline Bi(Fe0.95Cu0.05)O3 sample has been prepared by sol–gel method. The analysis of X-ray diffraction patterns demonstrates that the sample exhibits a rhombohedral structure. Compared with BiFeO3, the magnetic behavior of Bi(Fe0.95Cu0.05)O3 sample almost does not change. Raman data analysis indicates that the lattice distortion exists in a Bi(Fe0.95Cu0.05)O3 sample. The results of differential scanning calorimetry demonstrate that Cu2+ ion doping affects the magnetic order and decreases the Néel temperature of BiFeO3. The lattice distortion and the counteractive role between the intervening on the spin chains of Fe ions make the magnetic properties of Cu-doped BiFeO3 not increase.

Keywords

Multiferroic materials XRD Magnetic properties SEM Raman 

Notes

Acknowledgements

This work is financially supported by NSFC under contracts Nos. U1232133 and 51172110 and by the research project of Nanjing University of Posts and Telecommunications under contracts No. NY212099 and NY208027. Moreover, the authors would like to thank BSRF for its beamtime.

References

  1. 1.
    Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., et al.: Science 299, 1719–1722 (2003) CrossRefADSGoogle Scholar
  2. 2.
    Schmid, H.: Ferroelectrics 162, 317–338 (1994) CrossRefGoogle Scholar
  3. 3.
    Spaldin, N.A., Fiebig, M.: Science 309, 391–392 (2005) CrossRefGoogle Scholar
  4. 4.
    Hill, N.A., FiliPetti, A.: J. Magn. Magn. Mater. 242–245, 976–979 (2002) CrossRefGoogle Scholar
  5. 5.
    Hill, N.A.: J. Phys. Chem. B 104, 6694–6709 (2000) CrossRefGoogle Scholar
  6. 6.
    Catalan, G., Scott, J.F.: Adv. Mater. 21, 2463–2485 (2009) CrossRefGoogle Scholar
  7. 7.
    Cheng, Z.X., Wang, X.L., Dou, S.X., Kimura, H., Ozawa, K.: J. Appl. Phys. 104, 116109–116111 (2008) CrossRefADSGoogle Scholar
  8. 8.
    Cheng, Z.X., Li, A.H., Wang, X.L., Dou, S.X., Ozawa, K., Kimura, H., Zhang, S.J., Shrout, T.R.: J. Appl. Phys. 103, 07E507 (2008) Google Scholar
  9. 9.
    Yu, B., Li, M., Hu, Z., Pei, L., Guo, D., Zhao, X., Dong, S.: Appl. Phys. Lett. 93, 182909–182911 (2008) CrossRefADSGoogle Scholar
  10. 10.
    Kharel, P., Talebi, S., Ramachandran, B., Dixit, A., Naik, V.M., Sahana, M.B., Sudakar, C., Naik, R., Rao, M.S.R., Lawes, G.: J. Phys. Condens. Matter 21, 036001–036006 (2009) CrossRefADSGoogle Scholar
  11. 11.
    Shannigrahi, S.R., Huang, A., Chandrasekhar, N., Tripathy, D., Adeyeye, A.O.: Appl. Phys. Lett. 90, 022901–022903 (2007) CrossRefADSGoogle Scholar
  12. 12.
    Wei, J., Haumont, R., Jarrier, R., Berhtet, P., Dkhil, B.: Appl. Phys. Lett. 96, 102509–102511 (2010) CrossRefADSGoogle Scholar
  13. 13.
    Xu, Q.Y., Zai, H.F., Wu, D., Tang, Y.K., Xu, M.X.: J. Alloys Compd. 485, 13–16 (2009) CrossRefADSGoogle Scholar
  14. 14.
    Ge, J.J., Xue, X.B., Cheng, G.F., Yang, M., You, B., Zhang, W., et al.: J. Magn. Magn. Mater. 324, 200–204 (2012) CrossRefADSGoogle Scholar
  15. 15.
    Jeon, N., Rout, D., Kim, I.W., Kang, S.L.: Appl. Phys. Lett. 98, 072901–072903 (2011) CrossRefADSGoogle Scholar
  16. 16.
    Hermet, P., Goffinet, M., Kreisel, J., Ghosez, P.: Phys. Rev. B 75, 220102 (2007) CrossRefADSGoogle Scholar
  17. 17.
    Varshney, D., Kumar, A., Verma, K.: J. Alloys Compd. 509, 8421–8426 (2011) CrossRefGoogle Scholar
  18. 18.
    Yang, Y., Sun, J.Y., Zhu, K., Liu, Y.L., Wan, L.: J. Appl. Phys. 103, 093532–093536 (2008) CrossRefADSGoogle Scholar
  19. 19.
    Yasui, S., Uchida, H., Nakaki, H., Nishida, K., Funakubo, H., Koda, S.: Appl. Phys. Lett. 91, 022906–022908 (2007) CrossRefADSGoogle Scholar
  20. 20.
    Kharel, P., Talebi, S., Ramachandran, B., Dixit, A., Naik, V.M., Sahana, M.B., Sudakar, C., Naik, R., Rao, M.S.R., Lawes, G.: J. Phys. Condens. Matter 21, 036001–036006 (2009) CrossRefADSGoogle Scholar
  21. 21.
    Quan, Z., Liu, W., Hu, H., Xu, S., Sebo, B., Fang, G.J., Li, M.Y., Zhao, X.Z.: J. Appl. Phys. 104, 084106–0841012 (2008) CrossRefADSGoogle Scholar
  22. 22.
    Haas, O., Vogt, U.F., Soltmann, C., Braun, A., Yoon, W.-S., Yang, X.Q., Graule, T.: Mater. Res. Bull. 44, 1397–1404 (2009) CrossRefGoogle Scholar
  23. 23.
    Khomchenko, V.A., Kiselev, D.A., Selezneva, E.K., Vieira, J.M., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., Kholkin, A.L.: Mater. Lett. 62, 1927–1929 (2008) CrossRefGoogle Scholar
  24. 24.
    Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Kholkin, A.L., Sa, M.A., Pogorelov, Y.G.: Appl. Phys. Lett. 90, 242901–242903 (2007) CrossRefADSGoogle Scholar
  25. 25.
    Sosnowska, I., Peterlin-Neumaier, T., Steichele, E.: J. Phys. C, Solid State Phys. 15, 4835–4846 (1982) CrossRefADSGoogle Scholar
  26. 26.
    Osorio-Guillen, J., Lany, S., Barabash, S.V., Zunger, A.: Phys. Rev. B 75, 184421 (2007) CrossRefADSGoogle Scholar
  27. 27.
    Shi, C.Y., Liu, X.Z., Hao, Y.M., Hu, Z.B.: Mater. Res. Bull. 46, 378–383 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yongtao Li
    • 1
    • 2
  • Yunwu Fan
    • 1
  • Hongguang Zhang
    • 1
  • Xiaoxue Teng
    • 1
  • Xueguang Dong
    • 2
  • Hao Liu
    • 2
  • Xiaopeng Ge
    • 2
  • Qi Li
    • 2
  • Wei Chen
    • 1
  • Xing’ao Li
    • 1
  • Zhiyong Ge
    • 1
  1. 1.Experimental Teaching Center of PhysicsNanjing University of Posts and TelecommunicationsNanjingP.R. China
  2. 2.Department of PhysicsSoutheast UniversityNanjingP.R. China

Personalised recommendations