Skip to main content
Log in

Structural, Thermal, and Magnetic Properties of Cu-doped BiFeO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A polycrystalline Bi(Fe0.95Cu0.05)O3 sample has been prepared by sol–gel method. The analysis of X-ray diffraction patterns demonstrates that the sample exhibits a rhombohedral structure. Compared with BiFeO3, the magnetic behavior of Bi(Fe0.95Cu0.05)O3 sample almost does not change. Raman data analysis indicates that the lattice distortion exists in a Bi(Fe0.95Cu0.05)O3 sample. The results of differential scanning calorimetry demonstrate that Cu2+ ion doping affects the magnetic order and decreases the Néel temperature of BiFeO3. The lattice distortion and the counteractive role between the intervening on the spin chains of Fe ions make the magnetic properties of Cu-doped BiFeO3 not increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., et al.: Science 299, 1719–1722 (2003)

    Article  ADS  Google Scholar 

  2. Schmid, H.: Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  3. Spaldin, N.A., Fiebig, M.: Science 309, 391–392 (2005)

    Article  Google Scholar 

  4. Hill, N.A., FiliPetti, A.: J. Magn. Magn. Mater. 242–245, 976–979 (2002)

    Article  Google Scholar 

  5. Hill, N.A.: J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  6. Catalan, G., Scott, J.F.: Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  7. Cheng, Z.X., Wang, X.L., Dou, S.X., Kimura, H., Ozawa, K.: J. Appl. Phys. 104, 116109–116111 (2008)

    Article  ADS  Google Scholar 

  8. Cheng, Z.X., Li, A.H., Wang, X.L., Dou, S.X., Ozawa, K., Kimura, H., Zhang, S.J., Shrout, T.R.: J. Appl. Phys. 103, 07E507 (2008)

    Google Scholar 

  9. Yu, B., Li, M., Hu, Z., Pei, L., Guo, D., Zhao, X., Dong, S.: Appl. Phys. Lett. 93, 182909–182911 (2008)

    Article  ADS  Google Scholar 

  10. Kharel, P., Talebi, S., Ramachandran, B., Dixit, A., Naik, V.M., Sahana, M.B., Sudakar, C., Naik, R., Rao, M.S.R., Lawes, G.: J. Phys. Condens. Matter 21, 036001–036006 (2009)

    Article  ADS  Google Scholar 

  11. Shannigrahi, S.R., Huang, A., Chandrasekhar, N., Tripathy, D., Adeyeye, A.O.: Appl. Phys. Lett. 90, 022901–022903 (2007)

    Article  ADS  Google Scholar 

  12. Wei, J., Haumont, R., Jarrier, R., Berhtet, P., Dkhil, B.: Appl. Phys. Lett. 96, 102509–102511 (2010)

    Article  ADS  Google Scholar 

  13. Xu, Q.Y., Zai, H.F., Wu, D., Tang, Y.K., Xu, M.X.: J. Alloys Compd. 485, 13–16 (2009)

    Article  ADS  Google Scholar 

  14. Ge, J.J., Xue, X.B., Cheng, G.F., Yang, M., You, B., Zhang, W., et al.: J. Magn. Magn. Mater. 324, 200–204 (2012)

    Article  ADS  Google Scholar 

  15. Jeon, N., Rout, D., Kim, I.W., Kang, S.L.: Appl. Phys. Lett. 98, 072901–072903 (2011)

    Article  ADS  Google Scholar 

  16. Hermet, P., Goffinet, M., Kreisel, J., Ghosez, P.: Phys. Rev. B 75, 220102 (2007)

    Article  ADS  Google Scholar 

  17. Varshney, D., Kumar, A., Verma, K.: J. Alloys Compd. 509, 8421–8426 (2011)

    Article  Google Scholar 

  18. Yang, Y., Sun, J.Y., Zhu, K., Liu, Y.L., Wan, L.: J. Appl. Phys. 103, 093532–093536 (2008)

    Article  ADS  Google Scholar 

  19. Yasui, S., Uchida, H., Nakaki, H., Nishida, K., Funakubo, H., Koda, S.: Appl. Phys. Lett. 91, 022906–022908 (2007)

    Article  ADS  Google Scholar 

  20. Kharel, P., Talebi, S., Ramachandran, B., Dixit, A., Naik, V.M., Sahana, M.B., Sudakar, C., Naik, R., Rao, M.S.R., Lawes, G.: J. Phys. Condens. Matter 21, 036001–036006 (2009)

    Article  ADS  Google Scholar 

  21. Quan, Z., Liu, W., Hu, H., Xu, S., Sebo, B., Fang, G.J., Li, M.Y., Zhao, X.Z.: J. Appl. Phys. 104, 084106–0841012 (2008)

    Article  ADS  Google Scholar 

  22. Haas, O., Vogt, U.F., Soltmann, C., Braun, A., Yoon, W.-S., Yang, X.Q., Graule, T.: Mater. Res. Bull. 44, 1397–1404 (2009)

    Article  Google Scholar 

  23. Khomchenko, V.A., Kiselev, D.A., Selezneva, E.K., Vieira, J.M., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., Kholkin, A.L.: Mater. Lett. 62, 1927–1929 (2008)

    Article  Google Scholar 

  24. Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Kholkin, A.L., Sa, M.A., Pogorelov, Y.G.: Appl. Phys. Lett. 90, 242901–242903 (2007)

    Article  ADS  Google Scholar 

  25. Sosnowska, I., Peterlin-Neumaier, T., Steichele, E.: J. Phys. C, Solid State Phys. 15, 4835–4846 (1982)

    Article  ADS  Google Scholar 

  26. Osorio-Guillen, J., Lany, S., Barabash, S.V., Zunger, A.: Phys. Rev. B 75, 184421 (2007)

    Article  ADS  Google Scholar 

  27. Shi, C.Y., Liu, X.Z., Hao, Y.M., Hu, Z.B.: Mater. Res. Bull. 46, 378–383 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by NSFC under contracts Nos. U1232133 and 51172110 and by the research project of Nanjing University of Posts and Telecommunications under contracts No. NY212099 and NY208027. Moreover, the authors would like to thank BSRF for its beamtime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Fan, Y., Zhang, H. et al. Structural, Thermal, and Magnetic Properties of Cu-doped BiFeO3 . J Supercond Nov Magn 27, 1239–1243 (2014). https://doi.org/10.1007/s10948-013-2391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2391-1

Keywords

Navigation