Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 27, Issue 4, pp 1073–1078 | Cite as

Polyaniline–MnFe2O4-CTAB Nanocomposite in Ionic Liquid: Electrical Properties

  • S. Shafiu
  • B. Ünal
  • A. Baykal
Original Paper

Abstract

Polyaniline–MnFe2O4-CTAB nanocomposite was successfully synthesized by using 1-butyl-3-methyl-imidazolium trifluoromethane sulfonate (RTILs) as ionic liquid and Cetyl trimethylammonium bromide (CTAB) as surfactant via in-situ polymerization. The calculated average crystallite size, D XRD, of the product was 26±4 nm. Conductivity and permittivity properties of Polyaniline–MnFe2O4 nanocomposite was also exemplified by means of an impedance spectroscopy, which would be evaluated at frequency ranges up to 3 MHz for temperature range of 20–120 °C. In general, ac conductivity remains almost unchanged until it reaches up to 160 kHz, and then reduces slightly almost for all temperatures except for some slight fluctuation somehow at lower temperatures. The values fluctuate between 1.1–1.6 mS/cm at above all temperatures.

Keywords

Ionic liquid Conductivity Dielectric properties MnFe2O4 Nanocomposite 

Notes

Acknowledgements

This work is supported by Fatih University under BAP Grant no. P50021203_Y (2282).

References

  1. 1.
    Lucigno, C., Quadrini, F., Santo, L.: J. Compos. Mater. 42, 2841 (2008) CrossRefADSGoogle Scholar
  2. 2.
    Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E.: J. Compos. Mater. 40, 1511 (2006) CrossRefGoogle Scholar
  3. 3.
    Nguyen, V.H., Haldorai, Y., Phama, Q.L., Shim, J.J.: Mater. Sci. Eng. B 176, 773 (2011) CrossRefGoogle Scholar
  4. 4.
    Karaoğlu, E., Baykal, A., Deligöz, H., Şenel, M., Sözeri, H., Toprak, M.S.: J. Alloys Compd. 509, 8460 (2011) CrossRefGoogle Scholar
  5. 5.
    Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H., Yang, S.: Biomaterials 31, 3667 (2010) CrossRefGoogle Scholar
  6. 6.
    Sun, C., Lee, J.: Adv. Drug Deliv. Rev. 60, 1252 (2008) CrossRefGoogle Scholar
  7. 7.
    Nguyen, V.H., Haldorai, Y., Phama, Q.L., Shim, J.J.: Mater. Sci. Eng. B 176, 773 (2011) CrossRefGoogle Scholar
  8. 8.
    Goldman, A.: Modern Ferrite Technology. Van Nostrand–Reinhold, New York (1990) Google Scholar
  9. 9.
    Kitamoto, Y., Kantake, S., Shirasaki, S., Abe, F., Naoe, M.: J. Appl. Phys. 85, 4708 (1999) CrossRefADSGoogle Scholar
  10. 10.
    Shuping, Y., Mingjun, Xi., Kefei, H., Zhongming, W., Wensheng, Y., Hong, Z.: Thin Solid Films 519, 357 (2010) CrossRefGoogle Scholar
  11. 11.
    Jing, L., Lihua, Z., Yinghui, W., Yutaka, H., Aiqing, Z., Heqing, T.: Polymer 47, 7361 (2006) CrossRefGoogle Scholar
  12. 12.
    Yakuphanoglu, F., Basaran, E., Senkal, B.F., Sezer, E.: J. Phys. Chem. B 110, 16908 (2006) CrossRefGoogle Scholar
  13. 13.
    MacDiarmid, A.G., Chiang, J.C., Richter, A.F., Epstein, A.J.: Synth. Met. 18, 285 (1987) CrossRefGoogle Scholar
  14. 14.
    Elizabeth, W.P., Antonio, J.R., Wrighton, M.S.: J. Phys. Chem. 89, 1441 (1985) CrossRefGoogle Scholar
  15. 15.
    Guo, Y., Zhang, Y., Liu, H., Lai, S.W., Li, Y., Li, Yu., Hu, Wo., Wang, S., Che, C.M., Zhu, D.: J. Phys. Chem. Lett. 1, 327 (2010) CrossRefGoogle Scholar
  16. 16.
    Bereznev, S., Kois, J., Golovtsov, I., Opik, A., Mellikov, E.: Thin Solid Films 511–512, 425 (2006) CrossRefGoogle Scholar
  17. 17.
    Heeger, A.J., long, J.: Opt. Photonics News 7, 24 (1996) CrossRefGoogle Scholar
  18. 18.
    Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Science 270, 1789 (1995) CrossRefADSGoogle Scholar
  19. 19.
    Baykal, A., Kasapoğlu, N., Köseoğlu, Y., Toprak, M.S., Bayrakdar, H.: J. Alloys Compd. 464, 514 (2008) CrossRefGoogle Scholar
  20. 20.
    Ji, G.B., Tang, S.L., Ren, S.K., Zhang, F.M., Gu, B.X., Du, Y.W.: J. Cryst. Growth 270, 156 (2004) CrossRefADSGoogle Scholar
  21. 21.
    Wejrzanowski, T., Spychalski, W., Zniatowski, K., Kurzdlowski, K.J.: Int. J. Appl. Math. Comput. Sci. 18, 33 (2008) CrossRefGoogle Scholar
  22. 22.
    Pielaszek, R.: Analytical expression for diffraction line profile for polydispersive powders. In: Proceedings of the XIX Conference, Krakow, Poland, September, Appl. Crystallogr. (2003), 43 Google Scholar
  23. 23.
    Baykal, A., Günay, M., Toprak, M.S., Sozeri, H.: Mater. Res. Bull. 48, 378 (2013) CrossRefGoogle Scholar
  24. 24.
    Shafiu, S., Unal, B., Baykal, A.: J. Inorg. Organomet. Polym. (2013). doi: 10.1007/s10904-013-9928-4 Google Scholar
  25. 25.
    Unal, B., Baykal, A., Senel, M., Sozeri, H.: J. Inorg. Organomet. Polym. 23, 489 (2013) CrossRefGoogle Scholar
  26. 26.
    Unal, B., Senel, M., Baykal, A., Sozeri, H.: Curr. Appl. Phys. 13, 1404 (2013) CrossRefADSGoogle Scholar
  27. 27.
    Aydın, M., Unal, B., Esat, B., Baykal, A., Karaoglu, E., Toprak, M.S., Sozeri, H.: J. Alloys Compd. 514, 45 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Kano Univ. Science and Techn.WudilNigeria
  2. 2.Chemistry DepartmentFatih UniversityB. Çekmece-IstanbulTurkey
  3. 3.Department of Electrical & Electronics EngineeringFatih UniversityB. Çekmece-IstanbulTurkey
  4. 4.BioNano Technology R&D CenterFatih UniversityB. Çekmece-IstanbulTurkey

Personalised recommendations