Skip to main content
Log in

First-Principles Study of the Electronic Structure of Heavy Fermion YbNi2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigate the electronic properties of YbNi2 by means of band structure calculations based on the density functional theory within LDA (local density approximation), fully relativistic, and LDA+U schemes. The 4f derived bands are studied within a relativistic framework which yields flat and spin-orbit split bands, and a correlated band method (LDA+U) that includes correlation corrections. In both cases, the 4f bands, which is located roughly 200 meV below the Fermi level (E F ), hybridize weakly with the dispersive Ni-3d bands. When the fully relativistic scheme is applied, the 4f derived bands split into lower and higher bands due to spin-orbit coupling effects. The 4f electrons are delocalized through the hybridization with conduction electrons, and the hybridization between f and conduction d electrons also plays a important role in YbNi2. The on-site Coulomb potential is added to the Yb-derived 4f orbitals, the degeneracy between the 4f orbitals would be lifted partially and they are split into three manifolds bands. The Fermi surface splits into three different sheets which are from main the Yb-4f derived bands and Ni-3d bands. Band structure calculations reveal a saddle points existence at the L point in the energy dispersion curve closed to E F , whereby, we think YbNi2 might have a superconducting properties. In addition, the quasiparticle mass enhancement inferred by comparing γ to the density of states (DOS) at the Fermi level indicates the effective mass of YbNi2 enhanced with the fully relativistic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coleman, P.: In: Kronmüller, H., Parkin, S. (eds.) Heavy Fermions: Electrons at the Edge of Magnetism. Handbook of Magnetism and Advanced Magnetic Materials, vol. 1, pp. 95–148. Wiley, Chichester (2007)

    Google Scholar 

  2. Umeo, K., Kadomatsu, H., Takabatake, T.: Phys. Rev. B 55, R692 (1997)

    Article  ADS  Google Scholar 

  3. Trovarelli, O., Geibel, C., Mederle, S., Langhammer, C., Grosche, F.M., Gegenwart, P., Lang, M., Sparn, G., Steglich, F.: Phys. Rev. Lett. 85, 626 (2000)

    Article  ADS  Google Scholar 

  4. Custers, J., Gegenwart, P., Wilhelm, H., Neumaier, K., Tokiwa, Y., Trovarelli, O., Geibel, C., Steglich, F., Pépin, C., Coleman, P.: Nature 424, 524 (2003)

    Article  ADS  Google Scholar 

  5. Stewart, G.R.: Rev. Mod. Phys. 73, 797 (2001)

    Article  ADS  Google Scholar 

  6. Bogenberger, B., von Lohneysen, H.: Phys. Rev. Lett. 74, 1016 (1995)

    Article  ADS  Google Scholar 

  7. Grosche, F.M., Julian, S.R., Mathur, N.D., Lonzarich, G.G.: Physica B 50, 223 (1996)

    Google Scholar 

  8. Walker, I.R., Grosche, F.M., Freye, D.M., Lonzarich, G.G.: Physica C 303, 282 (1997)

    Google Scholar 

  9. Rojas, D.P., Fernández Barquín, L., Echevarria-Bonet, C., Rodríguez Fernández, J.: Solid State Commun. 152, 1834 (2012)

    Article  ADS  Google Scholar 

  10. Sarrao, J.L., Modler, R., Movshovich, R., Lacerda, A.H., Hristova, D., Cornelius, A.L., Hundley, M.F., Thompson, J.D., Benton, C.L., Immer, C.D., Torelli, M.E., Martins, G.B., Fisk, Z., Oseroff, S.B.: Phys. Rev. B 57, 7785 (1998)

    Article  ADS  Google Scholar 

  11. Jeong, T., Pickett, W.E.: J. Phys. Condens. Matter 18, 6289 (2006)

    Article  ADS  Google Scholar 

  12. Jeong, T.: Solid State Commun. 141, 316 (2007)

    Article  ADS  Google Scholar 

  13. Tsujii, N., Kitazawa, H.: Solid State Commun. 159, 65 (2012)

    Article  ADS  Google Scholar 

  14. Matsuoka, E., Tomiyama, Y., Sugawara, H., Sakurai, T., Ohta, H.: J. Phys. Soc. Jpn. 81, 043704 (2012)

    Article  ADS  Google Scholar 

  15. Prasad, A., Anand, V.K., Paramanik, U.B., Hossain, Z., Sarkar, R., Oeschler, N., Baeniz, M., Geibel, C.: Phys. Rev. B 86, 014414 (2012)

    Article  ADS  Google Scholar 

  16. Koepernik, K., Eschrig, H.: Phys. Rev. B 59, 1743 (1999)

    Article  ADS  Google Scholar 

  17. Perdew, J.P., Wang, Y.: Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  18. Liechtenstein, A.I., Anisimov, V.I., Zaanen, J.: Phys. Rev. B 52, R5468 (1995)

    Article  ADS  Google Scholar 

  19. Schik, A.B., Liechtenstein, A.I., Pickett, W.E.: Phys. Rev. B 60, 10728 (1999)

    Google Scholar 

  20. Shick, A.B., Novikov, D.L., Freeman, A.J.: Phys. Rev. B 57, R14259 (1997)

    Article  ADS  Google Scholar 

  21. Jeong, T.: Physica B 388, 249 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Nature Science Foundation of Gansu province in China (Grant Nos. 1212RJZA036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan E.

Rights and permissions

Reprints and permissions

About this article

Cite this article

E, Y., Wu, BN. First-Principles Study of the Electronic Structure of Heavy Fermion YbNi2 . J Supercond Nov Magn 27, 735–739 (2014). https://doi.org/10.1007/s10948-013-2368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2368-0

Keywords

Navigation